• Title/Summary/Keyword: Optimized mechanism

Search Result 386, Processing Time 0.032 seconds

Double Sieve Collision Attack Based on Bitwise Detection

  • Ren, Yanting;Wu, Liji;Wang, An
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.296-308
    • /
    • 2015
  • Advanced Encryption Standard (AES) is widely used for protecting wireless sensor network (WSN). At the Workshop on Cryptographic Hardware and Embedded Systems (CHES) 2012, G$\acute{e}$rard et al. proposed an optimized collision attack and break a practical implementation of AES. However, the attack needs at least 256 averaged power traces and has a high computational complexity because of its byte wise operation. In this paper, we propose a novel double sieve collision attack based on bitwise collision detection, and an improved version with an error-tolerant mechanism. Practical attacks are successfully conducted on a software implementation of AES in a low-power chip which can be used in wireless sensor node. Simulation results show that our attack needs 90% less time than the work published by G$\acute{e}$rard et al. to reach a success rate of 0.9.

Preparation of needle coke from petroleum by-products

  • Halim, Humala Paulus;Im, Ji Sun;Lee, Chul Wee
    • Carbon letters
    • /
    • v.14 no.3
    • /
    • pp.152-161
    • /
    • 2013
  • Needle coke is an important material for graphite electrodes. Delayed coking is used to produce needle coke. Producing good quality needle coke is not simple because it is a multi-parameter controlled process. Apart from that, it is important to understand the mechanism responsible for the delayed coking process, which involves mesophase formation and uniaxial rearrangement. Temperature and pressure need to be optimized for the different substances in every feedstock. Saturate hydrocarbon, aromatic, resin and asphaltene compounds are the main components in the delayed coking process for a low Coefficient Thermal Expansion value. In addition, heteroatoms, such as sulphur, oxygen, nitrogen and metal impurities, must be considered for a better graphitization process that prevents the puffing effect and produces better mesophase formation.

On the Necessity of Cavity-type Coupling Mechanism for obtaining Circular Polarization with Microstrip Patch Antenna

  • Abegaonkar, Mahesh P.;Cho, Young-Ki
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.459-463
    • /
    • 2003
  • A circularly polarized microstrip patch antenna (MPA) using electromagnetic (EM) coupled fed method is analyzed in view of the two types of coupling mechanisms viz. cavity and parasitic type, proposed earlier. The patch-ground plane distance is varied in order to achieve the fore-mentioned types of couplings. For each case of patch-ground plane distance, the offset position of feedline is optimized for perfect matching and the boresight axial ratio (AR) is observed. It is seen that CP operation is possible only for cavity-type coupling (smaller patch-ground plane distances). The simulated results for the boresight AR for the two types of coupling mechanisms are presented.

  • PDF

Effect of Ag Formation Mechanism on the Change of Optical Properties of SiInZnO/Ag/SiInZnO Multilayer Thin Films (SiInZnO/Ag/SiInZnO 다층박막의 Ag 형성 메카니즘에 따른 광학적 특성 변화)

  • Lee, Young Seon;Lee, Sang Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.347-350
    • /
    • 2013
  • By inserting a very thin metal layer of Ag between two outer oxide layers of amorphous silicon indium zinc oxide (SIZO), we fabricated a highly transparent SIZO/Ag/SIZO multilayer on a glass substrate. In order to find the optimized thickness of Ag layers, we investigated the variation of optical properties depending on Ag thickness. It was found that the transition of Ag layer from island formation to a continuous film occurred at a critical thickness. Continuity of the Ag film is very important for optical properties in SIZO/Ag/SIZO multilayer. With about 15 nm thick Ag layer, the multilayer showed a high optical transmittance of 80% at 550 nm and low emissivity in IR.

Snubber Analyzation and Vibration Measurement Estimation of Reciprocating Type Hydrogen Compressor (왕복동식 수소압축기의 완충기 해석 및 진동 측정 평가)

  • Jeong, J.H.;Lim, J.I.;Kim, H.J.;Choi, B.K.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.932-937
    • /
    • 2008
  • The pulsation of a reciprocating type hydrogen compressor is occurred from the mechanism and this pulsation makes much noise and vibration. To reduce this pulsation, snubber is usually installed on that. To maintain the efficiency in the reciprocating type hydrogen compressor, the pulsation and vibration should be reduced. so it is necessary to research about the characteristic of pulsation and vibration. Therefore in this paper, the vibration characteristic of the snubber is analyzed in the base of optimized modeling condition through the flowing analysis of existing snubber. The prototype of reciprocating type hydrogen compressor is analyzed with numerical analysis. And making sure the present condition of hydrogen compressor through measurement of vibration and noise, and then it is established that the vibration characteristic data base on numerical analysis which will be develope.

  • PDF

The Key Tree Model for Group Key Management (그룹키 관리를 위한 키트리 모델)

  • Han, Keun-Hee;Jeong, Tae-Eui;Yun, Yeo-Wung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10a
    • /
    • pp.837-840
    • /
    • 2000
  • For secure communications in using multicast applications such as Cable-TV, It is essential for us to manage shared keys to encrypt/decrypt data through crypto algorithm as DES, which is called Group Key Management. In GKM, It is a hot issue that reduces the number of join/leave operation and subgroup key in key tree model. In this paper, we propose optimized mechanism of group key management required for providing multicast security.

  • PDF

An Improved Harmony Search Algorithm and Its Application in Function Optimization

  • Tian, Zhongda;Zhang, Chao
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1237-1253
    • /
    • 2018
  • Harmony search algorithm is an emerging meta-heuristic optimization algorithm, which is inspired by the music improvisation process and can solve different optimization problems. In order to further improve the performance of the algorithm, this paper proposes an improved harmony search algorithm. Key parameters including harmonic memory consideration (HMCR), pitch adjustment rate (PAR), and bandwidth (BW) are optimized as the number of iterations increases. Meanwhile, referring to the genetic algorithm, an improved method to generate a new crossover solutions rather than the traditional mechanism of improvisation. Four complex function optimization and pressure vessel optimization problems were simulated using the optimization algorithm of standard harmony search algorithm, improved harmony search algorithm and exploratory harmony search algorithm. The simulation results show that the algorithm improves the ability to find global search and evolutionary speed. Optimization effect simulation results are satisfactory.

Elucidation of Multifaceted Evolutionary Processes of Microorganisms by Comparative Genome-Based Analysis

  • Nguyen, Thuy Vu An;Hong, Soon-Ho;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1301-1305
    • /
    • 2009
  • The evolution of living organisms occurs via a combination of highly complicated processes that involve modification of various features such as appearance, metabolism and sensing systems. To understand the evolution of life, it is necessary to understand how each biological feature has been optimized in response to new environmental conditions and interrelated with other features through evolution. To accomplish this, we constructed contents-based trees for a two-component system (TCS) and metabolic network to determine how the environmental communication mechanism and the intracellular metabolism have evolved, respectively. We then conducted a comparative analysis of the two trees using ARACNE to evaluate the evolutionary and functional relationship between TCS and metabolism. The results showed that such integrated analysis can give new insight into the study of bacterial evolution.

An Analysis of Femoral Bone Remodeling Using Topology Optimization Method

  • Choi J. B.
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.6
    • /
    • pp.365-372
    • /
    • 2005
  • Topology optimization method has a great advantage and capability over a conventional shape optimization technique because it optimizes a topology as well as a shape and size of structure. The purpose of the present study, using topology optimization method with an objective function of minimum compliance as a mechanism of bone remodeling, is to examine which shape factors of femur is strongly related with the curvature of femoral shaft. As is expected, the optimized curvature increased definitely with neck angle among the shape factors and showed a similar trend with the measured curvature to neck angle. Therefore, the topology optimization method can be successfully applied in the analysis of bone remodeling phenomenon in the subsequent studies.

Self-Tuning Modified Skyhook Control for Semi -Active Suspension Systems (자기동조기법을 이용한 반능동 현가장치의 수정된 스카이훅제어 구현 및 실험)

  • 정재룡;손현철;홍금식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.114-114
    • /
    • 2000
  • In this paper a self-tuning modified skyhook control for the semi-active suspension systems is investigated. The damping force generation mechanism is modeled We consider a 2 DOF time-varying quarter car model that permits parameter variations of the sprung mass and suspension spring coefficient. The modified skyhook control algorithm proposed in this paper requires only the measurement of body acceleration. The absolute velocity of the sprung mass and the relative velocity of the suspension deflection are estimated by using integral filters, according to parameter variations. The skyhook gains are designed in such a way that the body acceleration and the dynamic tire force are optimized. An ECU prototype will be discussed

  • PDF