References
- Asenjo, J. A., P. Ramirez, I. Rapaport, J. Aracena, E. Goles, and B. A. Andrews. 2007. A discrete mathematical model applied to genetic regulation and metabolic networks. J. Microbiol. Biotechnol. 17: 496-510
- Bansal, A. K. 1999. An automated comparative analysis of 17 complete microbial genomes. Bioirfomatics 15: 900-908 https://doi.org/10.1093/bioinformatics/15.11.900
- Brown, J. R., C. J. Douady, M. J. ltalia, W. E. Marshall, and M. J. Stanhope. 2001. Universal trees based on large combined protein sequence data sets. Nat. Genet. 28: 281-285 https://doi.org/10.1038/90129
- Butte, A. J. and I. S. Kohane. 2000. Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements. Pac. Symp. Biocomput. 5: 418-429
- Daubin, V., M. Gouy, and G. Perriere. 2002. A phylogenie approach to bacterial phylogeny: Evidence of core genes sharing a common history. Genome Res. 12: 1080-1090 https://doi.org/10.1101/gr.187002
- Duarte, N. C., S. A. Becker, N. Jamshidi, I. Thiele, M. I. Mo, T. D. Vo, R. Srivas, and B. O. Palsson. 2007. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl. Acad. Sci. U.S.A. 104: 1777-1782 https://doi.org/10.1073/pnas.0610772104
- Eisen, M. B., P. T. Spellman, P. O. Brown, and D. Botstein. 1998. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA. 95: 14863-14868 https://doi.org/10.1073/pnas.95.25.14863
- Feng, D. F., G. Cho, and R. F. Doolittle. 1997. Determining divergence times with a protein clock: Update and reevaluation. Proc. Natl. Acad. Sci. USA. 94: 13028-13033 https://doi.org/10.1073/pnas.94.24.13028
- Fitch, W. M. and E. Margoliash. 1967. Construction of phylogenetic trees. Science 155: 279-284 https://doi.org/10.1126/science.155.3760.279
- Fitz-Gibbon, S. T. and C. H. House. 1999. Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res. 27: 4218-4222 https://doi.org/10.1093/nar/27.21.4218
- Franckea, C., R. J. Siezena, and B. Teusink. 2005. Reconstructing the metabolic network of a bacterium from its genome. Trends Microbiol. 13: 550-558 https://doi.org/10.1016/j.tim.2005.09.001
- Hong, S. H. 2007. Systems approaches to succinic acid-producing microorganisms. Biotechnol. Bioprocess Eng. 12: 73-79 https://doi.org/10.1007/BF03028629
- Hong, S. H., T. Y. Kim, and S. Y. Lee. 2004. Phylogenetic analysis based on genome-scale metabolic pathway reaction content. Appl. Microbiol. Biotechnol. 65: 203-210
- Ideker, T., T. Galitski, and L. Hood. 2001. A new approach to decoding life: Systems biology. Annu. Rev. Genomics Hum. Genet. 2: 343-372 https://doi.org/10.1146/annurev.genom.2.1.343
- Kanehisa, M., S. Goto, S. Kawashima, and A. Nakaya. 2002. The KEGG databases at GenomeNet. Nucleic Acids Res. 30: 42-46 https://doi.org/10.1093/nar/30.1.42
- Kitano, H. 2002. Systems biology: A brief overview. Science 295: 1662-1664 https://doi.org/10.1126/science.1069492
- Kim, J. S. and S. Y. Lee. 2006. Genomic tree of gene contents based on the functional groups of KEGG orthology. J. Microbiol. Biotechnol. 16: 748-756
- Kim, T. Y. and S. Y. Lee. 2006. Accurate metabolic flux analysis through data reconciliation of isotope balance-based data. J. Microbiol. Biotechnol. 16: 1139-1143
- Lee, S. Y., H. M. Woo, D-Y. Lee, H. S. Choi, T. Y. Kim, and H. Yun. 2005. Systems-level analysis of genome-scale in silico metabolic models using MetaFluxNet. Biotechnol. Bioprocess Eng. 10: 425-431 https://doi.org/10.1007/BF02989825
- Ma, H. W. and A. P. Zeng. 2004. Phylogenetic comparison of metabolic capacities of organisms at genome level. Mol. Phylogenet Evol. 31: 204-213 https://doi.org/10.1016/j.ympev.2003.08.011
- Margolin, A. A., K. Wang, W. K. Lim, M. Kustagi, I. Nemenman, and A. Califano. 2006. Reverse engineering cellular networks. Nat. Protocol 1: 663-672
- Meyer, T. E., M. A. Cusanovich, and M. D. Kamen. 1986. Evidence against use of bacterial amino acid sequence data for construction of all-inclusive phylogenetic trees. Proc. Natl. Acad. Sci. U.S.A. 83: 217-220 https://doi.org/10.1073/pnas.83.2.217
- Nguyen, T. V. A. and S. H. Hong. 2008. Whole genome-based phylogenetic analysis of bacterial two-component systems. Biotechnol. Bioprocess Eng. 13: 288-292 https://doi.org/10.1007/s12257-008-0017-4
- Olsen, G. J., C. R. Woese, and R. Overbeek. 1994. The wind of (evolutionary) change: Breathing new life into microbiology. J. Bacteriol. 176: 1-6
- Ribeiro, S. and G. B. Golding. 1998. The mosaic nature of the eukaryotic nucleus. Mol. Biol. Evol. 15: 779-788 https://doi.org/10.1093/oxfordjournals.molbev.a025983
- Rivera, M. C., R. Jain, J. E. Moore, and J. A. Lake. 1998. Genomic evidence for two functionally distinct gene classes. Proc. Natl. Acad. Sci. USA. 95: 6239-6244 https://doi.org/10.1073/pnas.95.11.6239
- Snel, B., P. Bork, and M. A. Huynen. 1999. Genome phylogeny based on gene content. Nat. Genet. 21: 108-110 https://doi.org/10.1038/5052
- Tekaia, F., A. Lazcano, and B. Dujon. 1999. The genomic tree as revealed from whole proteome comparisons. Genome Res. 9: 550-557
- Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51: 221-271
- Zuckerkandl, E. and L. Pauling. 1965. Molecules as documents of evolutionary history. J. Theor. Biol. 8: 357-366 https://doi.org/10.1016/0022-5193(65)90083-4
Cited by
- Addressing the challenges for sustainable production of algal biofuels: II. Harvesting and conversion to biofuels vol.34, pp.13, 2009, https://doi.org/10.1080/09593330.2013.831487
- Bioethanol Production by Carbohydrate-Enriched Biomass of Arthrospira (Spirulina) platensis vol.6, pp.8, 2013, https://doi.org/10.3390/en6083937
- Influence of Chemical, Mechanical, and Thermal Pretreatment on the Release of Macromolecules from Two Irish Seaweed Species vol.49, pp.1, 2009, https://doi.org/10.1080/01496395.2013.830131
- Engineering pathways to biofuels in photoautotrophic microorganisms vol.5, pp.1, 2009, https://doi.org/10.4155/bfs.13.67
- Untreated Chlorella homosphaera biomass allows for high rates of cell wall glucan enzymatic hydrolysis when using exoglucanase-free cellulases vol.8, pp.None, 2009, https://doi.org/10.1186/s13068-015-0215-1
- Sustainable biodiesel production through bioconversion of lignocellulosic wastewater by oleaginous fungi vol.5, pp.2, 2009, https://doi.org/10.1007/s13399-014-0128-4
- Use of Monascus sp. NP1 for bioethanol production from Cladophora glomerata vol.30, pp.6, 2009, https://doi.org/10.1007/s10811-018-1487-1
- Direct and highly productive conversion of cyanobacteria Arthrospira platensis to ethanol with CaCl 2 addition vol.11, pp.None, 2009, https://doi.org/10.1186/s13068-018-1050-y
- Extraction of Starch from Marine Microalgae, Chlorella salina: Efficiency and Recovery vol.13, pp.2, 2019, https://doi.org/10.1007/s41742-019-00173-0
- Effect of post-treatment process of microalgal hydrolysate on bioethanol production vol.10, pp.1, 2009, https://doi.org/10.1038/s41598-020-73816-4