DOI QR코드

DOI QR Code

Elucidation of Multifaceted Evolutionary Processes of Microorganisms by Comparative Genome-Based Analysis

  • Nguyen, Thuy Vu An (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Hong, Soon-Ho (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Lee, Sang-Yup (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering(BK21 Program), Korea Advanced Institute of Science and Technology)
  • Published : 2009.11.30

Abstract

The evolution of living organisms occurs via a combination of highly complicated processes that involve modification of various features such as appearance, metabolism and sensing systems. To understand the evolution of life, it is necessary to understand how each biological feature has been optimized in response to new environmental conditions and interrelated with other features through evolution. To accomplish this, we constructed contents-based trees for a two-component system (TCS) and metabolic network to determine how the environmental communication mechanism and the intracellular metabolism have evolved, respectively. We then conducted a comparative analysis of the two trees using ARACNE to evaluate the evolutionary and functional relationship between TCS and metabolism. The results showed that such integrated analysis can give new insight into the study of bacterial evolution.

Keywords

References

  1. Asenjo, J. A., P. Ramirez, I. Rapaport, J. Aracena, E. Goles, and B. A. Andrews. 2007. A discrete mathematical model applied to genetic regulation and metabolic networks. J. Microbiol. Biotechnol. 17: 496-510
  2. Bansal, A. K. 1999. An automated comparative analysis of 17 complete microbial genomes. Bioirfomatics 15: 900-908 https://doi.org/10.1093/bioinformatics/15.11.900
  3. Brown, J. R., C. J. Douady, M. J. ltalia, W. E. Marshall, and M. J. Stanhope. 2001. Universal trees based on large combined protein sequence data sets. Nat. Genet. 28: 281-285 https://doi.org/10.1038/90129
  4. Butte, A. J. and I. S. Kohane. 2000. Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements. Pac. Symp. Biocomput. 5: 418-429
  5. Daubin, V., M. Gouy, and G. Perriere. 2002. A phylogenie approach to bacterial phylogeny: Evidence of core genes sharing a common history. Genome Res. 12: 1080-1090 https://doi.org/10.1101/gr.187002
  6. Duarte, N. C., S. A. Becker, N. Jamshidi, I. Thiele, M. I. Mo, T. D. Vo, R. Srivas, and B. O. Palsson. 2007. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl. Acad. Sci. U.S.A. 104: 1777-1782 https://doi.org/10.1073/pnas.0610772104
  7. Eisen, M. B., P. T. Spellman, P. O. Brown, and D. Botstein. 1998. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA. 95: 14863-14868 https://doi.org/10.1073/pnas.95.25.14863
  8. Feng, D. F., G. Cho, and R. F. Doolittle. 1997. Determining divergence times with a protein clock: Update and reevaluation. Proc. Natl. Acad. Sci. USA. 94: 13028-13033 https://doi.org/10.1073/pnas.94.24.13028
  9. Fitch, W. M. and E. Margoliash. 1967. Construction of phylogenetic trees. Science 155: 279-284 https://doi.org/10.1126/science.155.3760.279
  10. Fitz-Gibbon, S. T. and C. H. House. 1999. Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res. 27: 4218-4222 https://doi.org/10.1093/nar/27.21.4218
  11. Franckea, C., R. J. Siezena, and B. Teusink. 2005. Reconstructing the metabolic network of a bacterium from its genome. Trends Microbiol. 13: 550-558 https://doi.org/10.1016/j.tim.2005.09.001
  12. Hong, S. H. 2007. Systems approaches to succinic acid-producing microorganisms. Biotechnol. Bioprocess Eng. 12: 73-79 https://doi.org/10.1007/BF03028629
  13. Hong, S. H., T. Y. Kim, and S. Y. Lee. 2004. Phylogenetic analysis based on genome-scale metabolic pathway reaction content. Appl. Microbiol. Biotechnol. 65: 203-210
  14. Ideker, T., T. Galitski, and L. Hood. 2001. A new approach to decoding life: Systems biology. Annu. Rev. Genomics Hum. Genet. 2: 343-372 https://doi.org/10.1146/annurev.genom.2.1.343
  15. Kanehisa, M., S. Goto, S. Kawashima, and A. Nakaya. 2002. The KEGG databases at GenomeNet. Nucleic Acids Res. 30: 42-46 https://doi.org/10.1093/nar/30.1.42
  16. Kitano, H. 2002. Systems biology: A brief overview. Science 295: 1662-1664 https://doi.org/10.1126/science.1069492
  17. Kim, J. S. and S. Y. Lee. 2006. Genomic tree of gene contents based on the functional groups of KEGG orthology. J. Microbiol. Biotechnol. 16: 748-756
  18. Kim, T. Y. and S. Y. Lee. 2006. Accurate metabolic flux analysis through data reconciliation of isotope balance-based data. J. Microbiol. Biotechnol. 16: 1139-1143
  19. Lee, S. Y., H. M. Woo, D-Y. Lee, H. S. Choi, T. Y. Kim, and H. Yun. 2005. Systems-level analysis of genome-scale in silico metabolic models using MetaFluxNet. Biotechnol. Bioprocess Eng. 10: 425-431 https://doi.org/10.1007/BF02989825
  20. Ma, H. W. and A. P. Zeng. 2004. Phylogenetic comparison of metabolic capacities of organisms at genome level. Mol. Phylogenet Evol. 31: 204-213 https://doi.org/10.1016/j.ympev.2003.08.011
  21. Margolin, A. A., K. Wang, W. K. Lim, M. Kustagi, I. Nemenman, and A. Califano. 2006. Reverse engineering cellular networks. Nat. Protocol 1: 663-672
  22. Meyer, T. E., M. A. Cusanovich, and M. D. Kamen. 1986. Evidence against use of bacterial amino acid sequence data for construction of all-inclusive phylogenetic trees. Proc. Natl. Acad. Sci. U.S.A. 83: 217-220 https://doi.org/10.1073/pnas.83.2.217
  23. Nguyen, T. V. A. and S. H. Hong. 2008. Whole genome-based phylogenetic analysis of bacterial two-component systems. Biotechnol. Bioprocess Eng. 13: 288-292 https://doi.org/10.1007/s12257-008-0017-4
  24. Olsen, G. J., C. R. Woese, and R. Overbeek. 1994. The wind of (evolutionary) change: Breathing new life into microbiology. J. Bacteriol. 176: 1-6
  25. Ribeiro, S. and G. B. Golding. 1998. The mosaic nature of the eukaryotic nucleus. Mol. Biol. Evol. 15: 779-788 https://doi.org/10.1093/oxfordjournals.molbev.a025983
  26. Rivera, M. C., R. Jain, J. E. Moore, and J. A. Lake. 1998. Genomic evidence for two functionally distinct gene classes. Proc. Natl. Acad. Sci. USA. 95: 6239-6244 https://doi.org/10.1073/pnas.95.11.6239
  27. Snel, B., P. Bork, and M. A. Huynen. 1999. Genome phylogeny based on gene content. Nat. Genet. 21: 108-110 https://doi.org/10.1038/5052
  28. Tekaia, F., A. Lazcano, and B. Dujon. 1999. The genomic tree as revealed from whole proteome comparisons. Genome Res. 9: 550-557
  29. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51: 221-271
  30. Zuckerkandl, E. and L. Pauling. 1965. Molecules as documents of evolutionary history. J. Theor. Biol. 8: 357-366 https://doi.org/10.1016/0022-5193(65)90083-4

Cited by

  1. Addressing the challenges for sustainable production of algal biofuels: II. Harvesting and conversion to biofuels vol.34, pp.13, 2009, https://doi.org/10.1080/09593330.2013.831487
  2. Bioethanol Production by Carbohydrate-Enriched Biomass of Arthrospira (Spirulina) platensis vol.6, pp.8, 2013, https://doi.org/10.3390/en6083937
  3. Influence of Chemical, Mechanical, and Thermal Pretreatment on the Release of Macromolecules from Two Irish Seaweed Species vol.49, pp.1, 2009, https://doi.org/10.1080/01496395.2013.830131
  4. Engineering pathways to biofuels in photoautotrophic microorganisms vol.5, pp.1, 2009, https://doi.org/10.4155/bfs.13.67
  5. Untreated Chlorella homosphaera biomass allows for high rates of cell wall glucan enzymatic hydrolysis when using exoglucanase-free cellulases vol.8, pp.None, 2009, https://doi.org/10.1186/s13068-015-0215-1
  6. Sustainable biodiesel production through bioconversion of lignocellulosic wastewater by oleaginous fungi vol.5, pp.2, 2009, https://doi.org/10.1007/s13399-014-0128-4
  7. Use of Monascus sp. NP1 for bioethanol production from Cladophora glomerata vol.30, pp.6, 2009, https://doi.org/10.1007/s10811-018-1487-1
  8. Direct and highly productive conversion of cyanobacteria Arthrospira platensis to ethanol with CaCl 2 addition vol.11, pp.None, 2009, https://doi.org/10.1186/s13068-018-1050-y
  9. Extraction of Starch from Marine Microalgae, Chlorella salina: Efficiency and Recovery vol.13, pp.2, 2019, https://doi.org/10.1007/s41742-019-00173-0
  10. Effect of post-treatment process of microalgal hydrolysate on bioethanol production vol.10, pp.1, 2009, https://doi.org/10.1038/s41598-020-73816-4