2000 BINS MG =) HHE@

E=Ed H73 M2

=

L5

7] #ElE H% 71EY 29

T B*, Aoy, Fof g

5L 7=
¥ T

@ §8583

wex T sbm 7 FE 9o}
wer ROl A FE o

e-mail : tejeong@seokyeong.ac.kr

The Key Tree Model for Group Key Management

Keunhee Han*, Taseui Jeong **, Yeowung Yun ***

* Department of Applied Wathematics, Kongju National University
** Department of Computer Science, Seokyeong University
*** Deparitment of Computer Science, Chungbuk National University

Abstract
For secure communications in using multicast applications such as Cable-TV, It is essential for us to
manage shared keys to encrypt/decrypt data through crypto algorithm as DES, which is called Group
Key Management. In GKM, It is a hot issue that reduces the number of join/leave operation and
subgroup key in key tree model. In this paper, we propose optimized mechanism of group key
management required for providing multicast security.

1. Introduction

Multicast circumstances include many issues like
secure communications. To hide data from all but
authorized receivers, you need to encrypt the data. But
how do you efficiently distribute a key to thousands of
receivers? In multicast environment, Key management
is an essential part for secure communications. To
securely communicate between any two
communicating peers, both peers must share a secret
key.

The technical problems involved in secure multicast
arise from the fact that most multicast applications
such as tele-conferencing application require real time
processing of data. To encrypt/decrypt data quickly any
multicast application can not afford to adapt
asymmetric cryptography such as RSA. Hence, a
single symmetric cryptographic key, called a group key,
must be shared among all the users in muiticast group
for encrypting/decrypting multicast data. This group
key need to be changed as the users of the group join
and leave the group so that a new user can not decrypt
the messages that transferred before that user joins

837

the group and a leaving user can not decrypt the
messages that will be transferred after the user leaves
the group.

In multicast environment if the muiticast data need to
be secure, then the users must share a common group
(secret symmetric) key, which is used to
encrypting/decrypting all the group communication.
The key management scheme used for unicast may
also be used for multicast; however, it is not practical.
For example, if there are n members in a multicast
group, distributing the group key securely to all n
members requires n messages encrypted by the n
different individual keys. This means that the
computational cost is proportional to group size n.
Therefore, we certainly need special key management
mechanisms for secure multicast.

In chapter 2 of this paper, we will introduce several
existing group key management schemes and in
chapter 3, especially we will survey centralized group
key management in detail. Also, in chapter 4, we prove
that constructing a group key tree model that contains
optimum performances on both join and leave

2000 & B=HEHO NS FH &L H=2H HM72 235

operation is impossible if the group size is greater than
two. Based on these observations, we propose a new
tree structure that may be used to improve the
performance of any tree-based centralized group key
management mechanisms. In chapter 5, we will
evaluate proposed group key management mechanism
and draw a conclusion.

2. Introduction of Group Key Management
When we design a group key management scheme we
must try to minimize the time required for initial setup,
storage requirement for each user and the group key
server(s), and the total number of transmissions
required for initial setup, rekey and maintenance.
These minimization efforts are very important for any
group key management schemes to be successful
because muiticast applications, for example, a video
conferencing, requires real-time processing.

We need several definitions for group key
management[9][10]. Join is an operation that adds a
new user to an existing muiticast group. Leave is an
operation that evicts a member from muiticast group
that the leaving user belongs to. To achieve a high
level of security, the group key should be changed after
every join and leave operations so that a leaving group
member can not decrypt any further group messages
and newly joining member can not decrypt any
previous group messages. These security
requirements of muiticast are commonly referred as
“Backward and Forward Secrecy” in literatures. Rekey
is an operation that changes the current group key to a
new group key. Note that not every joinfleave
operations followed by rekey operations. Security
policy of a group key management system will decide if
rekey is necessary for every joinfleave operations.
There are two kinds of group key management
schemes: Centralized Group Key Management and
Distributed Group Key Management. This
categorization is based on the number of key
management servers involved in the group key
management schemes. Group key servers are
responsible for the creation, distribution and
management of group keys. Centralized group key
management involves only one group key server while
distributed group key management involves more than
one group key servers. Members in centralized group
key management need to trust their unique group key
server while members in Distributed group key
management need to trust multiple group key servers.
Generally, centralized group key management scheme
provides more secure environment and efficient rekey
operations than distributed group key management
scheme. However, in terms of scalability, distributed
group key management is far better than centralized
group key management.

Examples of the distributed group key management
are as follows:
¢ SMKD (Scalabie Multicast Key Distribution}) ([1]),

838

* MKMP (Multicast Key Management Protocol) ([21),
o lolus ([3)), and
¢ Intra-domain group key management ({4)),

Examples of the centralized group key management
are as follows:

¢ Logical Key Hierarchy ([5]),

e Key Graph ([6]), and

e One-Way Function Tree ([7]).

3. Characteristics of Centralized Group
Key Management

In section 3.1 we introduced three leading centralized
group key management. Alt these three management
schemes use tree hierarchy as their base architecture.
Among these schemes, the two mechanisms, LKH ([5])
and Key Tree ([6]), actually suggest the same group
key management technique. Hence, we will call these
two schemes as “Key Tree".

key tree is a special graph of key graph such that it
contains no cycles. Note that a connected graph G is a
tree if and only if it contains no cycles. Figure 1 shows
an example of a key tree that contains four user nodes
uq, Uy, Ui, and us. The key contains in the root of the
tree (kiss) is the group key. Keys k; through k,
represents the individual keys for the users u, through
u,, respectively. Note that these individual keys are not
shared among the users.

k1234

ky

U

U Uus Uy

Figure 1: A Key Tree

Note that group key server must store and manage all
the keys used in the key tree. However, each user
needs to store only the keys in the path between itself
and the root of the tree. For example, in the figure 1,
user u, needs to store keys {ka, K12, Kiz34}-

The height h of a key tree is the length of the longest
path from the root to any key node that contains
individual key. The degree d of a key tree is the
number of children nodes of a node that contains the
greatest number of children among the internal nodes.

4. Optimization of Key Tree Model

In the previous chapter we introduced the key tree
model and analyzed its performance on join and leave
operations. The following table summarizes the
performance of join and leave operations on key tree
model.

2000 RIS FH SLYH=Y M7 MH2&

Table 1 : Performance of Key Tree Modei

Operations Modes Number of rekey messages Enc. Costs
Join user-oriented h+1 (h+1)h+2)2-1
key-oriented h+1 2h
user-oriented h(d -1 -1 1)/2
Leave . (@-1) h(d - 1)(h + 1)
key-oriented h(d-1) hd - 1

From the above table, it is clear that the performances
of key-oriented mode are much better than the
performance of user-oriented mode. We will assume
that the key server adapts key-oriented mode when
sending rekey messages.

The key tree models we have analyzed up to now are
perfectly balanced tree[8]. However, by varying the
degree of internal nodes at different heights, we may
be able to optimize the performance of key trees. Also,

it is desirable if we can reduce the number of internal
nodes since all the internal nodes must be stored in
the key server and the key server must generate and
manage the subgroup keys assigned to the internal
nodes. The following table shows the performance and
required resources for the various key tree models that
use perfectly balanced trees to accommodate 100,000
users.

Table 2 : Performance of various key tree models with group size 100,000

Py ek
Degree | Height Rekﬁzrn;ejzis; ges | e ﬁii :‘ Ieesas:;ges Suzg;:u" Maxs.ig;oup
operation operation required
2 17 18 17 131,070 131,072
3 11 12 22 88,572 177,147
4 9 10 27 87,380 262,144
5 8 9 32 97,655 390,625
6 7 8 35 55,086 279,936

Note that the tree models used in the above tables are
perfectly balanced tree. We will use the notation x-Tree
as the tree with degree x. This example shows that the
shorter tree generates less number of rekey messages
required for a join operation while the longer tree
generates less number of rekey messages required for
a leave operation.

From the above analysis we can see that any tree
model with fixed degree does not offer optimal
performance in all aspects. However, the required
number of rekey message for a leave operation for this
model is more than double than that of the 2-Tree
model. The following theorems generalize these
observations.

Lemma 4.1 : For any key tree model that contains n
users and generates L rekey messages for a leave
operation, there exists a 2-Tree model (i.e., binary tree)
that can contains at least (n + 1) users and generates
tess than or equal to L rekey messages for a leave
operation.

From the above theorem the following theorem is
immediate:

Theorem 4.1 : Binary tree model generates the least
number of rekey messages for a leave operation
among all group key management models based on

839

tree.

Any group key server model based on tree structure
must send at least one message if the group is empty
and two messages if the group is not empty when the
join operation occurs. Therefore, the following theorem
is immediate:

Theorem 4.2 : n-Tree model generates the least
number of rekey messages for a join operation among
all group key management models based on tree and
manages n (= 1) users.

Theorem 4.1 and 4.2 indicate that n-Trees contain the
optimum performance for join operations and 2-Trees
contain the optimum performance for leave operations.
These observation leads to the fact that there exists no
tree structure that contains optimum performance for
both join and leave operations if the group size is
larger than three.

The following is the algorithm that finds an optimal tree
structure that can accommodate up to n users.
Algorithm 4.1 : OptimizedKeyTree

Input. The group size, n.

Output: Degree sequence for the optimized tree
structure that can accommodate at least n users,

1 h=llog, nl:

2

20004 sIREBHeIES =) SHESLH=EY

H72 H28

3 for(i=1;i<=h;i++) 16 if (di.2 = maxDeg)
4 { 17 diza=di,+1,
5 maxDeg(i)=h-i+2; 18 else
6 for(=1;j <= C(maxDeg +i-3,i-1); j++) 19 find minimum k such that dy is equal
7 { to maxDeg;
8 if (i==1)setdy=n; 20 setd, =2, where 0 <x<sk-1;
9 else 21 setd, = maxDeg, wherek <y <i-1,
10 setd,=2,where0<ks<i-2; 22 }
1 setdiy=dox dyx ... x dig; 23 }
12 Let T, = T{do, d1, ..., diy} be the tree being
considered
13 Compute leaveMsg(T)), joinMsg(T), Let's take a running example of the algorithm with n =
leaveEnc(T), joinEnc(T;), subkey(T;) 20. With n = 20 the algorithm considers the following
14 Compare these performances against candidate trees that are represented by their
previous one and select best one. corresponding degree sequences.
15
Table 3 ; Example of the algorithm 4.1 with n = 20
Height Deg. sequence leaveMsg(T) joinMsg(T) subkey(T) leaveEnc(T) joinEnc(T)
4 2,2,2,3 5 5 14 8 8
5 2,2,2,2,2 5 6 30 g 10

This is an example that there is a non-binary key tree
structure that shows the same performance on leave
operations but shows better performances for other
aspects. Consider the key tree model T{2, 2, 2, 3}. T{2,
2, 2, 3} requires five rekey messages for a leave
operation while 2-Tree also requires five rekey
messages for a leave operation. However, T{2, 2, 2, 3}
shows better performance on join operation than 2-Tree
does. Also, T{2, 2, 2, 3} uses less than half subgroup
keys than 2-Tree does. T{2, 2, 2, 3} also shows better
performance on leaveEnc(T) and joinEnc(T) than 2-
Tree does. Therefore, in this case, the algorithm selects
T{2, 2, 2, 3} as the optimal key tree structure.

In the previous example, the algorithm selects T{2, 2, 2,
3} as the optimal key tree structure for the group size of
20. But, this optimal structure is based on our
assumption that any optimal key tree structure must
show the same performance on leave operation as the
2-Tree does. However, if we are able to relax this
constraint we can select a key tree structure that shows
better performances in overall.

5. Conclusion

This paper proposes optimized mechanism of group
key management required for providing multicast
security on internet environment. Proposed mechanism
is a new tree structure that may be used to improve the
performance of any tree-based centralized group key
management mechanisms. Also, we confirmed that our
optimized tree structure preserve the optimum
performance on leave operation while contains
reasonable performance on join operation and this
optimization’s efforts also reduce the number of
subgroup keys that the group key server must store and
manage.

Since our optimized tree structure preserve the

optimum performance on leave operation of centralized
group key management, it is necessary for us to
research on the variety of group key management in
consideration of scalability in the future.

References

[1] A. Ballardie, “Scalable Multicast Key Distribution”,
RFC1949, May 1996

[2] Harkins D., N. Doraswamy, "A Secure, Scalable
Multicast Key Management Protocol(MKMP)”

[3] Mittra S, “lolus : A Framework for Scalable Secure
Multicast”, In Proceeding of ACM SIGCOMM'97,
Cannes, France, Sep. 1997.

[4] Thomas Hardjono, B. Cain, Indermohan Monga,
“Intra-Domain Group Key Management Protocol”,
internet-draft, draft-ietf-ipsec-intragkm-00.txt.

{5) Debby M. Wallner, Eric J. Harder, Ryan C. Agee,
“Key Management for Multicast Issues and
Architectures”, internet-draft, draft-wallner-key-arch-
01.txt, 1998

[6] Chung Kei Wong, Mohamed Gouda, Simon S. Lam,
“Secure Group Communications Using Key
Graphs”

[7] “Key Management for Large Dynamic Groups : One-
Way Function Trees and Amortized Initialization”,
internet-draft, draft-balenson-groupkeymgmt-oft.txt

[8] M. J. Moyer, J.R. Rao, and P. Rohatgi, “Maintaining
Balanced Key Trees for Secure Multicast”, internet-
draft draft-itf-smug-key-tree-balance-00.txt, June
1999.

[9] H. Harney, C. Muckenhirn, “Group Key Management
Protocol(GKMP) Architecture’, RFC 2094, July,
1997.

{10] T Hardjono, B. Cain and N. Doraswamy, “ A
Framework for Group Key Management for Multicast
Security”, internet-draft, July 1998.

840

