• Title/Summary/Keyword: Optimized algorithm

Search Result 1,831, Processing Time 0.028 seconds

A Variable Latency K'th Order Newton-Raphson's Floating Point Number Divider (가변 시간 K차 뉴톤-랍손 부동소수점 나눗셈)

  • Cho, Gyeong-Yeon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.5
    • /
    • pp.285-292
    • /
    • 2014
  • The commonly used Newton-Raphson's floating-point number divider algorithm performs two multiplications in one iteration. In this paper, a tentative K'th Newton-Raphson's floating-point number divider algorithm which performs K times multiplications in one iteration is proposed. Since the number of multiplications performed by the proposed algorithm is dependent on the input values, the average number of multiplications per an operation in single precision and double precision divider is derived from many reciprocal tables with varying sizes. In addition, an error correction algorithm, which consists of one multiplication and a decision, to get exact result in divider is proposed. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a floating point number divider unit. Also, it can be used to construct optimized approximate reciprocal tables.

A Genetic-Algorithm-Based Optimized Clustering for Energy-Efficient Routing in MWSN

  • Sara, Getsy S.;Devi, S. Prasanna;Sridharan, D.
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.922-931
    • /
    • 2012
  • With the increasing demands for mobile wireless sensor networks in recent years, designing an energy-efficient clustering and routing protocol has become very important. This paper provides an analytical model to evaluate the power consumption of a mobile sensor node. Based on this, a clustering algorithm is designed to optimize the energy efficiency during cluster head formation. A genetic algorithm technique is employed to find the near-optimal threshold for residual energy below which a node has to give up its role of being the cluster head. This clustering algorithm along with a hybrid routing concept is applied as the near-optimal energy-efficient routing technique to increase the overall efficiency of the network. Compared to the mobile low energy adaptive clustering hierarchy protocol, the simulation studies reveal that the energy-efficient routing technique produces a longer network lifetime and achieves better energy efficiency.

PSO algorithm for fundamental frequency optimization of fiber metal laminated panels

  • Ghashochi-Bargh, H.;Sadr, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.713-727
    • /
    • 2013
  • In current study, natural frequency response of fiber metal laminated (FML) fibrous composite panels is optimized under different combination of the three classical boundary conditions using particle swarm optimization (PSO) algorithm and finite strip method (FSM). The ply angles, numbers of layers, panel length/width ratios, edge conditions and thickness of metal sheets are chosen as design variables. The formulation of the panel is based on the classical laminated plate theory (CLPT), and numerical results are obtained by the semi-analytical finite strip method. The superiority of the PSO algorithm is demonstrated by comparing with the simple genetic algorithm.

A Kernel-Based Partitioning Algorithm for Low-Power, Low-Area Overhead Circuit Design Using Don't-Care Sets

  • Choi, Ick-Sung;Kim, Hyoung;Lim, Shin-Il;Hwang, Sun-Young;Lee, Bhum-Cheol;Kim, Bong-Tae
    • ETRI Journal
    • /
    • v.24 no.6
    • /
    • pp.473-476
    • /
    • 2002
  • This letter proposes an efficient kernel-based partitioning algorithm for reducing area and power dissipation in combinational circuit designs using don't-care sets. The proposed algorithm decreases power dissipation by partitioning a given circuit using a kernel extracted from the logic. The proposed algorithm also reduces the area overhead by minimizing duplicated gates in the partitioned sub-circuits. The partitioned subcircuits are further optimized utilizing observability don't-care sets. Experimental results for the MCNC benchmarks show that the proposed algorithm synthesizes circuits that on the average consume 22.5% less power and have 12.7% less area than circuits generated by previous algorithms based on a precomputation scheme.

  • PDF

Efficient Multi-way Tree Search Algorithm for Huffman Decoder

  • Cha, Hyungtai;Woo, Kwanghee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.34-39
    • /
    • 2004
  • Huffman coding which has been used in many data compression algorithms is a popular data compression technique used to reduce statistical redundancy of a signal. It has been proposed that the Huffman algorithm can decode efficiently using characteristics of the Huffman tables and patterns of the Huffman codeword. We propose a new Huffman decoding algorithm which used a multi way tree search and present an efficient hardware implementation method. This algorithm has a small logic area and memory space and is optimized for high speed decoding. The proposed Huffman decoding algorithm can be applied for many multimedia systems such as MPEG audio decoder.

An Optimized Algorithm for Constructing LDPC Code with Good Performance (고성능 LDPC 코드를 생성하기 위한 최적화된 알고리듬)

  • Suh, Hee-Jong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1149-1154
    • /
    • 2013
  • In this paper, an algorithm having new edge growth with depth constraints for constructing Tanner graph of LDPC(Low density parity check) codes is proposed. This algorithm reduces effectively the number of small stoping set in the graph and has lower complexity than other algorithm. The simulation results shows the improved performance of the LDPC codes constructed by this algorithm.

Hybrid Optimization Strategy using Response Surface Methodology and Genetic Algorithm for reducing Cogging Torque of SPM

  • Kim, Min-Jae;Lim, Jae-Won;Seo, Jang-Ho;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.202-207
    • /
    • 2011
  • Numerous methodologies have been developed in an effort to reduce cogging torque. However, most of these methodologies have side effects that limit their applications. One approach is the optimization methodology that determines an optimized design variable within confined conditions. The response surface methodology (RSM) and the genetic algorithm (GA) are powerful instruments for such optimizations and are matters of common interest. However, they have some weaknesses. Generally, the RSM cannot accurately describe an object function, whereas the GA is time consuming. The current paper describes a novel GA and RSM hybrid algorithm that overcomes these limitations. The validity of the proposed algorithm was verified by three test functions. Its application was performed on a surface-mounted permanent magnet.

Development of Control Algorithm for Effective Simultaneous Control of Multiple MR Dampers (다중 MR 감쇠기의 효과적인 동시제어를 위한 제어알고리즘 개발)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.3
    • /
    • pp.91-98
    • /
    • 2013
  • A multi-input single-output (MISO) semi-active control systems were studied by many researchers. For more improved vibration control performance, a structure requires more than one control device. In this paper, multi-input multi-output (MIMO) semi-active fuzzy controller has been proposed for vibration control of seismically excited small-scale buildings. The MIMO fuzzy controller was optimized by multi-objective genetic algorithm. For numerical simulation, five-story example building structure is used and two MR dampers are employed. For comparison purpose, a clipped-optimal control strategy based on acceleration feedback is employed for controlling MR dampers to reduce structural responses due to seismic loads. Numerical simulation results show that the MIMO fuzzy control algorithm can provide superior control performance to the clipped-optimal control algorithm.

Rate-Compatible LDPC Codes Based on the PEG Algorithm for Relay Communication Systems

  • Zhou, Yangzhao;Jiang, Xueqin;Lee, Moon Ho
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.346-350
    • /
    • 2015
  • It is known that the progressive edge-growth (PEG) algorithm can be used to construct low-density parity-check (LDPC) codes at finite code lengths with large girths through the establishment of edges between variable and check nodes in an edge-by-edge manner. In [1], the authors derived a class of LDPC codes for relay communication systems by extending the full-diversity root-LDPC code. However, the submatrices of the parity-check matrix H corresponding to this code were constructed separately; thus, the girth of H was not optimized. To solve this problem, this paper proposes a modified PEG algorithm for use in the design of large girth and full-diversity LDPC codes. Simulation results indicated that the LDPC codes constructed using the modified PEG algorithm exhibited a more favorable frame error rate performance than did codes proposed in [1] over block-fading channels.

Design of Nearest Prototype Classifier by using Differential Evolutionary Algorithm (차분진화 알고리즘을 이용한 Nearest Prototype Classifier 설계)

  • Roh, Seok-Beom;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.487-492
    • /
    • 2011
  • In this paper, we proposed a new design methodology to improve the classification performance of the Nearest Prototype Classifier which is one of the simplest classification algorithm. To optimize the position vectors of the prototypes in the nearest prototype classifier, we use the differential evolutionary algorithm. The optimized position vectors of the prototypes result in the improvement of the classification performance. The new method to determine the class labels of the prototypes, which are defined by the differential evolutionary algorithm, is proposed. In addition, the experimental application covers a comparative analysis including several previously commonly encountered methods.