International Journal of Fuzzy Logic and Intelligent Systems, vol. 4, no. 1, June 2004 pp. 34-39

Efficient Multi-way Tree Search Algorithm for Huffman Decoder

Hyungtai Cha and Kwanghee Woo

School of electronic engineering, Soongsil university, Seoul, Korea

Abstract

Huffman coding which has been used in many data compression algorithms is a popular data compression technique used to
reduce statistical redundancy of a signal. It has been proposed that the Huffman algorithm can decode efficiently using
characteristics of the Huffman tables and patterns of the Huffman codeword. We propose a new Huffman decoding algorithm
which used a multi way tree search and present an efficient hardware implementation method. This algorithm has a small logic
area and memory space and is optimized for high speed decoding. The proposed Huffman decoding algorithm can be applied

for many multimedia systems such as MPEG audio decoder.

Key-word : Huffman decoder, Multi-way search, Huffman Hardware Design.

1. Introduction

The Huffman coding algorithm is mostly used in data
compression to reduce statistical redundancy. Most of its
compression applications use only one codebook, while MPEG
audio system uses many codebooks to process an audio signal
for a whole frequency range[1]-[4]. The fast Huffman coding
algorithm should be applied for a real time process of a
decoder and an algorithm implemented by a small logic area
and small memory is required to minimize hardware.

This paper is organized as follows: Section 2 introduces the
conventional Huffman decoding algorithm. Section 3 presents
the Huffman decoder using multi way tree search algorithm.
We properly optimize to implement the proposed decoding
algorithm into hardware and apply it to the MPEG audio
decoder in Section 4. We verify the proposed algorithm
through the experiment and result in Section 5. Finally, a
conclusion is drawn in Section 6.

2. Conventional Huffman Decoder

Many algorithms has been proposed for efficient Huffman
decoding. Also, this algorithm has been used in real system
very often because of the effectiveness of the coding structure.
These are mostly separated into two methods, the tree search
algorithm [5,7] and the bit-paralleled algorithm [8-11].

2.1 Tree search algorithm

The tree search algorithm is generally used in the Huffman
decoder. In this method, a codeword of a tree structure is
searched after reading one bit from a packet bit stream. It
could be implemented by the finite state machine (FSM) [5].

Manuscrip received Mar. 29, 2004; revised May. 21, 2004.
This work was supported by the Soongsil University Research
Fund.

34

The method compares the state from the input bit with a
codeword of variable length. Therefore its decoding period is
not constant, and it requires too much time to decode a
codeword of long length.

2.2 Bit-paralleled algorithm

The bit-paralleled algorithm is the fastest method among
methods of hardware implementation. It can decode one
codeword per clock cycle by comparing the input codeword
with its hardware logic. After a common bit pattern in the
input bit stream is matched, it is used as the first parameter
for searching memory. The remaining codeword except for the
common bit pattern in the input bit stream, is used as the
second parameter for searching memory. The bit-paralleled
algorithm has advantages due to a constant period that is
irrespective of the input bit stream.

However, the size of the hardware logic become larger as
the size of the codebook is increased. This is due to the fact
that the bit-paralleled algorithm should match the input bit
stream and its logic. A MEPG audio system uses too many
codebooks for the bit-paralleled algorithm to be an efficient
decoding method. The Huffman coder of the MPEG-2 audio
AAC has eleven codebooks of spectrum data, and one
codebook of scale factor data. The total number of the
symbols are 1,362.

3. Huffman Decoder Using Multi-way Tree
Search

We propose a multi way tree search algorithm for the
Huffman decoder. This algorithm results in the smaller sized
hardware and faster speed. We use the FSM to search the tree
and the Huffman table which is saved on memory in advance
by representing each states with FSM. Because the input bit
stream is used as the memory address, it can be compared
with the memory immediately. To increase the speed of the

Efficient Multi-way Tree Search Algorithm for Huffman Decoder

decoder, we make the decoder process several bits in one
clock cycle.

3.1 The binary tree search without the memory search

Table 1 shows a 16 length codeword per codebook from
the Huffman codebook 1~3 of the MPEG-2 audio ACC by
length [1].

Table 1. Huffman table for MPEG-2 audio AAC

Codebook #1 Codebook #2 Codebook #3
index| Codeword | Len] Index| Codeword | Len} Index} Codeword | Len
28 10 1] 28 | 000 310010 1
43 | 10000 5] 43 | 0010 4| 27 | 1000 4
0D | 10001 51 0D [00110 51 01 | 1001 4
27 | 10010 51 29 {00111 5| 09 | 1010 4
31 | 10011 51 25 } 01000 51 03 | 1011 4
29 | 10100 5| 27 | 01001 51 24 111000 5
25 [10101 51 tF | 01010 51 04 | 11001 5
2B i 10110 51 2B | o1011 5] oC | 110100 6
1F 110111 5] 31 [01100 5 | 0A | 110101 6
3A | 1100000 71 22 {011010 6 | 1E [110110 6
16 | 1100001 71 16 {01101 6| oD [|110111 6
20 | 1100010 7 | 2E | 011100 6 | 1C { 111000 6
2E | 1100011 7] 2A | 011101 6 | 2A | 111001 6
22 | 1100100 7 | 30 [011110 6} 28 | 1110100 7
2A 11100110 71 2 [011111 6 | 1F | 1110101 7
4C 11100110 7 | 0C | 100000 6 | 25 { 1110110 7

/
L J

Figure 1 shows the codebook as binary tree.

The tree in Figure.l is constructed from the binary tree
with branches of child nodes of one bit from the encoded bit
stream. Each node of the tree is constructed by memory and
the search method is implemented by FSM [5]. Each child
node of two pairs consist of the even or odd address of the
memory. The data format of the memory in Figure 1 is
represented by either a leaf node or a non-leaf node.

h
Fig. 1. Binary tree for codebook #1

Leaf node: 0, index
Non-leaf node: 1, [segment]

In this notation, segment is used as the address of a child
node, and either '0' or '1' from the bit stream is used as the
offset address. To determine the address of the memory to be
used for the searching tree, we add the value of the offset to
the value of the segment address. The result of the addition is
the next address.

Next address = Segment + Offset
In table 2, we show the heap of the memory for searching
the tree of Figure 1.

Table 2. Memory heap of codebook #1

Addr.| Value | Addr.| Value | Addr.} Value [Addr.| Value
00 { 0,28 f 01 | 1,[02)] 02 | 1,[04] | 03 | 1,{12]
04 | 1,[06] [05 | 1,[0C] | 06 | 1,[08] | 07 | 1,[0A]
08 | 0,43 [09 | 0,0D | OA | 0,27 | OB | 0,31
oC | 1,[0E]} { OD [1,[10) | OE | 0,29 | OF | 0,25
10| 0,2B | 11 | O,1F | 12 | 1,[14] | 13 | 1,[26]
14 | 1,161 | 15 | 1,[24] | 16 | 1,18} | 17 | 1,[1E]
18 | 1,[t1A]} 19 | 1,[1C]| 1A | 0,3A | 1B | 0,16
1| 0,26 | 1D | 0,2E | 1E | 1,[20] | 1F [1,[22)
20| 0,22 [21 } 0,2A | 22 | 0,4C | 23 | 1,[.]
24 L2 LI 26| LIy 27 1)
28| L1290 L,Ll]2A] L,y 2B) 1)

S
/ L]

In Table 3, we show the process for searching the index
20h at the level 5 of Figure 1.

Table 3. tree search of index 29

Clock| Input Seg. Offset | Addr. | Value
1 1 00 1 01 1,02
2 0 02 0 02 1,04
3 1 04 1 04 1,0C
4 0 0C 0 0C 1,0E
5 0 OE 0 0E 0,29

1. If input 1 is occurred on clock 1, the value of the
memory address is Segment ('00'h) + Offset ('1'h) = '01'h.

2. Because the value of the '01'h address of the memory is
"1, 02" and it is not matched with the value of the codebook,
it is used for the segment of the next address.

3. If in clock 2 the input is '0, the value of the memory
address is Segment ('02'h) + Offset ('0'h) = '02'h.

4. Because the value of the memory address '02'h is "1,
04", and it is not matched with the value of the codebook, it
is used for the segment of the next address.

5. By the repetition of the same manner, we get the "0,
29" at the memory address 'OE'h and the index '29'h of the

35

International Journal of Fuzzy Logic and Intelligent Systems, vol. 4, no. 1, July 2004

codeword.

As stated above, the method of binary tree search with a 1
bit input per one clock consumes 7 clocks for decoding the
symbol of level 7. In the same manner, 19 clocks are enough
for the Huffman table of the MPEG-2 audio AAC with the
maximum 19 bits. Also, leaf nodes and non-leaf nodes of the
tree are constructed on the memory, but the memory is wasted
by the unnecessary construction of non-leaf nodes over the
real symbols.

3.2 Multi way tree search algorithm

We improve the binary tree of Figure 1 by increasing the
number of bits from the bit stream to 2 or 3 bit, and so
decrease the level of the tree and the number of non-leaf
nodes. Figure 2 shows the improved structure of tree.

Fig. 2 tree search of multi way tree search of order 3

In Figure 2, the root of the tree start from 1 bit, and each
node with the variable input becomes up to 3 bits according
to the distribution of the codeword. An input value up to 3
bits is used for the offset address. Figure 4 shows the heap of
memory used for the variable length search.

Table 4. Memory heap for FSM

starting address of the segment according to the number of the
codebook, it is possible to search the value of the codebook
at any given address.

Start

Address=Codebook Number;
Bits="000"Igetbits(1);
Address=AddressiBits;

MB=0Out.MoreBits;
Bits=Bits<<MB;
Bits=Bitslgetbits(MB);

]

Address =
(Out.Segment << 3)Bits;

I

\
Out.Symbol

Fig. 3 Flowchart for Huffman decoding

The algorithm of the multi way tree searchis represented as
a flow chart in Figure 3. The offset address is initialized as
'000', and the length of the first input is only one bit.
According to the number of the codebook, the memory
address is determined by adding the predefined address of the
segment to the offset address constructed by the input bits. If
the value at the given memory is matched with the value of
the codebook, the index value is the output. But if not, more
bits as input are needed to search the next node. Like this, the
repetition of searching the memory with the address obtained
by the addition of the segment address to offset is performed.
At this time, if the number of input bits as input is less than
3, the new offset address is obtained by shifting the value of
the previous offset address toward the left by number of the
previous input bits.

In Table 5, we show the process for searching the index
26h at level 5 of Figure 2.

Table 5. search tree of index 29

Addr.| Value | Addr.| Value | Addr.| Value | Addr.| Value
00 | 0,28 | 01 | [3,08 | 02 { [x,xx] | 03 | [x,xx]
04 | p,xx] | 05 } [x,xx] | 06 | [x,xxj | 07 [Ix, xx]
08 | [1,10] | 09 | {1,101] OA | [1,10]1 | OB | [1,10]
0C | [2,18)) OD | [2,18) OE | [,.] | OF | [,.]
10 0,43 11 0,0D 12 0, 27 13 0, 31
14 | 0,29 | 15 | 0,25 | 16 | 0,2B | 17 | 0,1F
18 | 0,3A [19 | 0,16 | 1A | 0,26 | 1B | 0,2E
1C | 0,22 | 1D | 0,2A | 1E | 0,4C | 1F | [..]

\/
L J

Figure 2 and Table 4 show the more efficient usage of the
memory over the normal binary tree due to the reduction of
the number of non-leaf nodes.

In this manner, Codebook #2 and #3 of Table 1 are
constructed on the memory heap in sequence, and with the

36

Clock] Input Seg. Offset Addr. Value
1 1 00 1 01 3,08
2 010 08 2 0A 1,10
3 0 10 4 14 0,29

1. If input 1 is occurred on clock 1, the value of the
memory address is Segment ('00'h) + Offset ('1'h) = '01'h.

2. Because the value of the '0l'h memory address is "3,
08", 3 bits are needed and the '08'h is used as the segment of

Efficient Multi-way Tree Search Algorithm for Huffman Decoder

the next address.

3. If in clock 2 the input is '010', the value of the memory
address is Segment ('08'h) + Offset (2'h) = '0Ah.

4. Because the value of the memory address '02h is "1,
10", 1 bit is needed and the '10'h is used as the segment of
the next address.

5. In clock 3, because the input is '0', we can get the value
of '14'h by shifting the value of the previous offset toward the
left by 1 bit and the adding offset ('4'h) to segment ('10'h).

6. Because the value at the memory of the address '14'h is
"0, 29", the index '29'h of the codeword become the output.

As mentioned above, the tree search method with up to 3
input bits per clock consumes up to 8 clocks for decoding the
Huffman table of MPEG-2 audio AAC with the maximum 19
bits. Also, due to the reduction of the number of non-leaf
nodes, memory is saved.

In general, the maximum number of bits to be used as
input is determined by the characteristics of the codebook. But
the faster the speed of decoding, the more the memory is
wasted due to the increase of don't care states. Considering
the trade off between the speed of decoding and the efficiency
of the memory usage, the maximum number of bits must be
determined properly.

4 Hardware Implementation

In this section, we designed the Huffman Decoder used in
the MPEG audio Layer-3 and the MPEG-2 audio AAC. We
used VHDL (Very High Speed Integrated Circuit Hardware
Description Language) and sysnopsys as development tools.
VHDL is suitable for implementing algorithm with hardware
and sysnopsys is used to synthesize the result from the VHDL
code output.

The Huffman decoder of the MPEG audio decodes the bit
stream which is decoded by analyzing the bit stteam and
choosing the Huffman table according to each band. Once one
Huffman codebook is selected, the segment has start address
of the codebook in memory heap space.

Until .the input bits are matched by codeword, it reads the
bit stream up to 3 bits. If the number of input bits to read is
less than or equal to 2, shifting the bit stream makes a 3 bit
offset address. In case of a mismatch with the codeword, the
value of the memory consists of 2 bits witch represents the
number of the input bit and 8 bits for the segment address in
the next cycle.

The Figure 4 shows the hardware block diagram of the
Huffman decoder implementing the multi way tree search of
order 3. Also, We construct the Huffman table in ROM, so
this hardware has flexibility. If the ROM is changed, this
algorithm can be applied to the MPEG audio Layer-3 and the
MPEG-2 audio AAC decoder.

Figure 5 shows the data format of the ROM address of the
codebook data. In figure 5 a), we designed it so that the
address format can represent a 2k word address space by the
8 bit segment pair, and the 3 bit offset part. Figure 5 b)

shows the data format of a leaf node of the tree. '00'represents
the upper 2 bits and the lower 9 bits are constructed by the
decoded index value. According to the MPEG-2 audio AAC,
the Huffman codebook can have up to 289 index entries in
one table, so we use 9 bits to contain this value. Figure 5 c¢)
shows a non-leaf node of the tree. The upper 2 bits are for
the number of input bits in next clock cycle, and the lower 8
bits is for the segment address of the next clock cycle.

DeMux |

Left Shifter

1 J Out
/. /o
Aw| Addr | ROM | VA
3 > 7 9
7> 11
8
8
Fig. 4. Block diagram of Huffman decoder
a) Aso A,
I]
Segment Offset
b) Do Dg Dg Dy
Data Format rO I 0 I I l] | | I | I |
(Include Symbol) L I T
Index Out
c) D, Dg D, D,

Data Format

(Include Address) L4 I

More Bits Next Segment

Fig. 5. Address and data format of table

5 Experiments and Result

In this section, we explain the validation of our proposal
about the MPEG audio decoder with the multi way tree search
algorithm, specially when the tree has a octal nodes. We
choose the bit streams, which are longer than 1 minute and
are compressed by the MPEG-2 AAC LC profile provided by
the MPEG group.

In Figure 6, we show the amount of clock consumption of
the sequential search method and the multi way tree search
algorithm. The sequential search method is the method from
the VM . (Verification Model) provided by the MPEG group,
starting from the shortest codeword and comparing memory
with the same length codeword.

According to the result of our experiments, the average
number of clock needed to read the bit stream to decode the
one sample and search the memory is 17 for the sequential

37

International Journal of Fuzzy Logic and Intelligent Systems, vol. 4, no. 1, July 2004

search method, but only 2.48 for multi way tree search of

order 3. In particular, we can reduce the maximum 300-clock
cycle to a 6-clock cycle while easily controlling the clock due
to the rapid decrease of differences between the decoding
cycles of the samples.

Sequential Search
300 T | |
| | ‘ |

i
]
|

clock

4000

2000 3000
samples

0 1000

Variable Length Tree Search

clock
o N & o

4000

3000

0 1000 2000
samples

Fig. 6. clock of Sequential search and multi way tree search

5000

Table 6. Implemented Huffman Decoder

Layer 3 AAC
Number of codebooks 15 12
Number of symbols 1,394 1,362
Maximum length of codeword 19 bits 19 bits
Decoding speed per symbol 8 clock (Max) 8 clock (Max)
Memory Space 2.4k words 2.0k words
Area of logic gate 400 gates

The Table 6 shows the memory size and the decoding
speed of the Huffman decoder used by the Layer 3 and the
ACC.

6. Conclusion

We proposed the Huffman Decoding Algorithm for the
system which has many Huffman tables. The Variable Length
Algorithm is used to quicken the search. We used a lower
logic gate and memory for our method, rather than the
traditional method and proved the algorithm by application of
the Huffman decoder of the MPEG audio decoder.

Because the input bit stream is used as the memory address
, the memory search is done at once. Also, Since there is no
need to save the codeword, the number of bits representing
the memory address used for saving the codebook is reduced
to half.

References

[1]1 ISO/IEC 13818-7, "Generic Coding of Moving Pictures
and Associated Audio Information - Part 7: Advanced
Audio Coding", 1997

[2] ISO/MEC 14496-3, "Information Technology - Coding of
Audiovisual Objects - Part 3: Audio, Subpart 4: T/F
Coding", 1998

[3] ISO/IEC 11172-3, "Information Technology - Generic
Coding of Moving Pictures and Associated Audio: Part
3: Audio", 1992

[4] ISO/EC JTC1/SC29/WG11 N2005, "Revised Report on
Complexity of MPEG-2 AAC Tools", Feb. 1998

[5] Vikram Iyengar, Krishnendu Chakrabarty "An efficient
finite-state machine implementation of Huffman
decoders", Information Processing Letters, V.64 N.6,
271-275, Dec. 1997

[6] Hong-Chung Chen, Yue-Li Wang, Yu-Feng Lan, "A
memory-efficient and fast Huffman decoding algorithm”,
Information Processing Letters, V.69, pp 119-122, 1999

[71 K. Woo, G. Kim, H. Hahn, H. Cha "Efficient Huffman
decoder using Octal tree search Algorithm", Journal of
the Korean Institute of Communication Sciences, vol. 25,
No. 12B, pp2033-2038, Dec. 2000

[8] Seung Bae Choi, Moon Ho Lee "A Fast Huffman
Decoder via Pattern Matching", ISPACS, pp 134-138,
1994

[9]1 Reza Hashemian, "Memory Efficient and High-Speed
Search Huffman Coding", IEEE Transactions on
Communications, V.43 N.10, Oct. 1995

[10] Reza Hashemian, "Efficient variable - length coding
under an assigned maximum code-length constraint",
Proceedings of the IEEE International Symposium on
Circuits and Systems - Volume 2, May. 1996

[11] Park S, Cho H, Cha JJ, "High speed search and an
area efficient Huffman decoder", IEICE Transactions on
Fundamentals of Electronics Communications &
Computer Sciences, V.E82-A N.6, Communications, V.43
N.10, Oct. 1995

Hyungtai Cha

He received the M.S. and Ph.D. degree in
dept. of Electrical Engineering from the
University of Pittsburgh in 1988 and 1993
respectively. He is currently an Associate
Professor in the School of Electronic
Engineering, Soongsil University. His recent
research interests include Multimedia
Systems and Applications, Audio and Video Signal Processing,
ASIC and DSP Implementation of Digital System, and
Communication System.

[\

Phone
E-mail

: +82-2-820-0711
: hcha@ssu.ac.kr

Efficient Multi-way Tree Search Algorithm for Huffman Decoder

Kwanghee Woo

Kwanghee Woo received the B.S. degree in
Electronic Engineering from Soongsil
University in 1998.

He is studying for his M.S. degree in
Soongsil University. His recent research
] interests include Audio Signal Processing and
Coding, MPEG Audio coding, ASIC Implementation of Digital
System.

E-mail : com3comd4 @mms.ssu.ac.kr

39

