DOI QR코드

DOI QR Code

PSO algorithm for fundamental frequency optimization of fiber metal laminated panels

  • Ghashochi-Bargh, H. (Aerospace Engineering Department, Centre of Excellence in Computational Aerospace Engineering, Amirkabir University of Technology) ;
  • Sadr, M.H. (Aerospace Engineering Department, Centre of Excellence in Computational Aerospace Engineering, Amirkabir University of Technology)
  • Received : 2013.03.16
  • Accepted : 2013.08.31
  • Published : 2013.09.10

Abstract

In current study, natural frequency response of fiber metal laminated (FML) fibrous composite panels is optimized under different combination of the three classical boundary conditions using particle swarm optimization (PSO) algorithm and finite strip method (FSM). The ply angles, numbers of layers, panel length/width ratios, edge conditions and thickness of metal sheets are chosen as design variables. The formulation of the panel is based on the classical laminated plate theory (CLPT), and numerical results are obtained by the semi-analytical finite strip method. The superiority of the PSO algorithm is demonstrated by comparing with the simple genetic algorithm.

Keywords

References

  1. Aksoylar, C., Omercikoglu, A., Mecitoglu, Z. and Omurtag, M.H. (2012), "Nonlinear transient analysis of FGM and FML plates under blast loads by experimental and mixed FE methods", Compos Struct., 94, 731-44. https://doi.org/10.1016/j.compstruct.2011.09.008
  2. Apalak, M.K., Yildirim, M. and Ekici, R. (2008), "Layer optimisation for maximum fundamental frequency of laminated composite plates for different edge conditions", Composites Science and Technology, 68, 537-50. https://doi.org/10.1016/j.compscitech.2007.06.031
  3. Bert, C.W. (1977), "Optimal design of a composite material plate to maximise its fundamental frequency", Journal of Sound and Vibration, 50, 229-37. https://doi.org/10.1016/0022-460X(77)90357-1
  4. Bert, C.W. (1978), "Design of clamped composite plates to maximise fundamental frequency", Journal of Mechanical Design, 100, 274-8. https://doi.org/10.1115/1.3453911
  5. Bloomfield, M.W., Diaconu, C.G. and Weaver, P.H. (2009), "On feasible regions of lamination parameters for lay-up optimization of laminated composites", Proceedings of the Royal Society of London, Series A (Mathematical, Physical and Engineering Sciences), 465(2104),1123-43.
  6. Eberhart, R.C. and Kennedy, J. (1995), "A new optimizer using particle swarm theory", Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE Service Center, Piscataway, NJ, Nagoya, Japan.
  7. Eberhart, R.C. and Shi, Y. (1998), "Comparison between genetic algorithms and Particle Swarm Optimization", (Eds. Porto, V.W., Saravanan, N., Waagen, D. and Eiben, A.E.), Evolutionary Programming VII, Springer.
  8. Erdal, F., Dogan, E. and Saka, M.P. (2013), "An improved Particle Swarm Optimizer for steel grillage systems", Structural Engineering and Mechanics, 47(4), 513-30. https://doi.org/10.12989/sem.2013.47.4.513
  9. Fukunaga, H. and Hideki Sekine, H. (1992), "Stiffness design method of symmetric laminates using lamination parameters", AIAA Journal., 30(11), 2791-3. https://doi.org/10.2514/3.11304
  10. Ghashochi Bargh, H. and Sadr, M.H. (2011), "Optimal design by Elitist-Genetic algorithm for maximum fundamental frequency of fiber metal laminated plates", Key Engineering Materials., 471-72, 331-6. https://doi.org/10.4028/www.scientific.net/KEM.471-472.331
  11. Ghashochi Bargh, H. and Sadr, M.H. (2012), "Stacking sequence optimization of composite plates for maximum fundamental frequency using particle swarm optimization algorithm", Meccanica, 47, 719-30. https://doi.org/10.1007/s11012-011-9482-5
  12. Grenestedt, J.L. and Gudmundson, P. (1993), "Lay-up optimisation of composite material structures", Proceedings of the IUTAM Symposium on Optimal Design with Advanced Materials, Lyngby, Denmark.
  13. Gurdal, Z., Haftka, R.T. and Hajela, P. (1999), Design and optimisation of laminated composite materials, John Wiley and Sons, New York.
  14. Hassan, R., Cohanim, B. and Weck, O. (2005), "A comparison of particle swarm optimization and the genetic algorithm", Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Material Conference, No. 1897, Austin, Texas.
  15. Jones, R.M. (1975), Mechanics of Composite Materials, Scripta, Washington, DC.
  16. Kam, T.Y. and Chang, R.R. (1993), "Design of laminated composite plate for maximum buckling load and vibration frequency", Comput Methods Appl Mech Eng., 106, 65-81. https://doi.org/10.1016/0045-7825(93)90185-Z
  17. Kaveh, A. and Talatahari, S. (2012), "A hybrid CSS and PSO algorithm for optimal design of structures", Structural Engineering and Mechanics, 42(6), 783-97. https://doi.org/10.12989/sem.2012.42.6.783
  18. Kennedy, J. and Eberhart, R.C. (1995), "Particle swarm optimization", Proc. IEEE Int'l Conf on Neural Networks, IEEE Service Center, Piscataway, NJ.
  19. Mateus, H.C., Soares, C.M.M. and Soares, C.A.M. (1991), "Sensitivity analysis and optimal design of thin laminated composite structures", Computers and Structures, 41, 501-8. https://doi.org/10.1016/0045-7949(91)90144-B
  20. Narita, Y. (2003), "Layerwise optimization for the maximum fundamental frequency of laminated composite plates", J. Sound and Vibration, 263, 1005-16. https://doi.org/10.1016/S0022-460X(03)00270-0
  21. Reiss, R. and Ramachandran, S. (1987), "Maximum frequency design of symmetric angle-ply laminates", (Ed. Marshall, I.H.), Composite Structures: Analysis and Design Studies, 1(4), 1476-87.
  22. Sadr, M.H. and Ghashochi Bargh, H. (2010), "Fundamental frequency optimization of angle-ply laminated plates using Elitist-Genetic algorithm and finite strip method", Proceedings of the ASME 10th Biennial Conference on Engineering Systems Design and Analysis, Istanbul, Turkey.
  23. Sadr, M.H. and Ghashochi Bargh, H. (2011), "Fundamental frequency optimization of laminated cylindrical panels by Elitist-Genetic algorithm", Key Engineering Materials., 471-472, 337-42. https://doi.org/10.4028/www.scientific.net/KEM.471-472.337
  24. Sadr, M.H. and Ghashochi Bargh, H. (2012), "Optimization of laminated composite plates for maximum fundamental frequency using Elitist-Genetic algorithm and finite strip method", J Glob Optim., 54, 707-28. https://doi.org/10.1007/s10898-011-9787-x
  25. Sepehri, A., Daneshmand, F. and Jafarpur, K. (2012), "A modified Particle Swarm approach for multi-objective Optimization of laminated composite structures", Structural Engineering and Mechanics, 42(3), 335-52. https://doi.org/10.12989/sem.2012.42.3.335
  26. Shooshtari, A. and Razav,i S. (2012), "Stability and bifurcation analysis of symmetric laminated composite and fiber metal laminated plates in steady-state motion", Information Engineering Letters., 2, 37-43.
  27. Shooshtari, A. and Razavi, S. (2010), "A closed form solution for linear and nonlinear free vibrations of composite and fiber metal laminated rectangular plates", Composite Structures., 92, 2663-75. https://doi.org/10.1016/j.compstruct.2010.04.001
  28. Tsai, S.W. and Pagano, N.J. (1968), "Invariant Properties of Composite Materials, in Composite Materials", Composite Materials Workshop, Tehnomic Pub. Co., 233-53.
  29. Vinson, J.R. and Sierakowski, R.L. (1986), The Behavior of Structures Composed of Composite Materials, Martinus Nijhoff, Dordrecht.

Cited by

  1. Vibration reduction of composite plates by piezoelectric patches using a modified artificial bee colony algorithm vol.11, pp.10, 2014, https://doi.org/10.1590/S1679-78252014001000009
  2. A modified multi-objective elitist-artificial bee colony algorithm for optimization of smart FML panels vol.52, pp.6, 2014, https://doi.org/10.12989/sem.2014.52.6.1209
  3. Proposing optimum parameters of TMDs using GSA and PSO algorithms for drift reduction and uniformity vol.63, pp.2, 2013, https://doi.org/10.12989/sem.2017.63.2.147
  4. Weighted sum multi-objective optimization of skew composite laminates vol.69, pp.1, 2013, https://doi.org/10.12989/sem.2019.69.1.021
  5. Optimizing frequencies of skew composite laminates with metaheuristic algorithms vol.36, pp.2, 2013, https://doi.org/10.1007/s00366-019-00728-x
  6. Fundamental frequency optimization of variable stiffness composite skew plates vol.232, pp.2, 2013, https://doi.org/10.1007/s00707-020-02871-9