• Title/Summary/Keyword: Optimization problem

Search Result 4,343, Processing Time 0.038 seconds

Improvement of Ant Colony Optimization Algorithm to Solve Traveling Salesman Problem (순회 판매원 문제 해결을 위한 개미집단 최적화 알고리즘 개선)

  • Jang, Juyoung;Kim, Minje;Lee, Jonghwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.3
    • /
    • pp.1-7
    • /
    • 2019
  • It is one of the known methods to obtain the optimal solution using the Ant Colony Optimization Algorithm for the Traveling Salesman Problem (TSP), which is a combination optimization problem. In this paper, we solve the TSP problem by proposing an improved new ant colony optimization algorithm that combines genetic algorithm mutations in existing ant colony optimization algorithms to solve TSP problems in many cities. The new ant colony optimization algorithm provides the opportunity to move easily fall on the issue of developing local optimum values of the existing ant colony optimization algorithm to global optimum value through a new path through mutation. The new path will update the pheromone through an ant colony optimization algorithm. The renewed new pheromone serves to derive the global optimal value from what could have fallen to the local optimal value. Experimental results show that the existing algorithms and the new algorithms are superior to those of existing algorithms in the search for optimum values of newly improved algorithms.

Optimization of Gable Frame Using the Modified Genetic Algorithm (개선된 유전자 알고리즘을 이용한 산형 골조의 최적화)

  • Lee, Hong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.4 s.10
    • /
    • pp.59-67
    • /
    • 2003
  • Genetic algorithm is one of the best ways to solve a discrete variable optimization problem. Genetic algorithm tends to thrive in an environment in which the search space is uneven and has many hills and valleys. In this study, genetic algorithm is used for solving the design problem of gable structure. The design problem of frame structure has some special features(complicate design space, many nonlinear constrants, integer design variables, termination conditions, special information for frame members, etc.), and these features must be considered in the formulation of optimization problem and the application of genetic algorithm. So, 'FRAME operator', a new genetic operator for solving the frame optimization problem effectively, is developed and applied to the design problem of gable structure. This example shows that the new opreator has the possibility to be an effective frame design operator and genetic algorithm is suitable for the frame optimization problem.

  • PDF

Combinatorial particle swarm optimization for solving blocking flowshop scheduling problem

  • Eddaly, Mansour;Jarboui, Bassem;Siarry, Patrick
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.295-311
    • /
    • 2016
  • This paper addresses to the flowshop scheduling problem with blocking constraints. The objective is to minimize the makespan criterion. We propose a hybrid combinatorial particle swarm optimization algorithm (HCPSO) as a resolution technique for solving this problem. At the initialization, different priority rules are exploited. Experimental study and statistical analysis were performed to select the most adapted one for this problem. Then, the swarm behavior is tested for solving a combinatorial optimization problem such as a sequencing problem under constraints. Finally, an iterated local search algorithm based on probabilistic perturbation is sequentially introduced to the particle swarm optimization algorithm for improving the quality of solution. The computational results show that our approach is able to improve several best known solutions of the literature. In fact, 76 solutions among 120 were improved. Moreover, HCPSO outperforms the compared methods in terms of quality of solutions in short time requirements. Also, the performance of the proposed approach is evaluated according to a real-world industrial problem.

Economic Power Dispatch with Valve Point Effects Using Bee Optimization Algorithm

  • Kumar, Rajesh;Sharma, Devendra;Kumar, Anupam
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.19-27
    • /
    • 2009
  • This paper presents a newly developed optimization algorithm, the Bee Optimization Algorithm (BeeOA), to solve the economic power dispatch (EPD) problem. The authors have developed a derivative free and global optimization technique based on the working of the honey bee. The economic power dispatch problem is a nonlinear constrained optimization problem. Classical optimization techniques fail to provide a global solution and evolutionary algorithms provide only a good enough solution. The proposed approach has been examined and tested on two test systems with different objectives. A simple power dispatch problem is tested first on 6 generators and then the algorithm is demonstrated on 13 thermal unit systems whose incremental fuel cost function takes into account the value point loading effect. The results are promising and show the effectiveness and robustness of the proposed approach over recently reported methods.

Simultaneous Optimization of Structure and Control Systems Based on Convex Optimization - An approximate Approach - (볼록최적화에 의거한 구조계와 제어계의 동시최적화 - 근사적 어프로치 -)

  • Son, Hoe-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1353-1362
    • /
    • 2003
  • This paper considers a simultaneous optimization problem of structure and control systems. The problem is generally formulated as a non-convex optimization problem for the design parameters of mechanical structure and controller. Therefore, it is not easy to obtain the global solutions for practical problems. In this paper, we parameterize all design parameters of the mechanical structure such that the parameters work in the control system as decentralized static output feedback gains. Using this parameterization, we have formulated a simultaneous optimization problem in which the design specification is defined by the Η$_2$and Η$\_$$\infty$/ norms of the closed loop transfer function. So as to lead to a convex problem we approximate the nonlinear terms of design parameters to the linear terms. Then, we propose a convex optimization method that is based on linear matrix inequality (LMI). Using this method, we can surely obtain suboptimal solution for the design specification. A numerical example is given to illustrate the effectiveness of the proposed method.

A Face Optimization Algorithm for Optimizing over the Efficient Set

  • Kim, Dong-Yeop;Taeho Ahn
    • Korean Management Science Review
    • /
    • v.15 no.1
    • /
    • pp.77-85
    • /
    • 1998
  • In this paper a face optimization algorithm is developed for solving the problem (P) of optimizing a linear function over the set of efficient solutions of a multiple objective linear program. Since the efficient set is in general a nonconvex set, problem (P) can be classified as a global optimization problem. Perhaps due to its inherent difficulty, relatively few attempts have been made to solve problem (P) in spite of the potential benefits which can be obtained by solving problem (P). The algorithm for solving problem (P) is guaranteed to find an exact optimal or almost exact optimal solution for the problem in a finite number of iterations.

  • PDF

ROBUST DUALITY FOR NONSMOOTH MULTIOBJECTIVE OPTIMIZATION PROBLEMS

  • Lee, Gue Myung;Kim, Moon Hee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • In this paper, we consider a nonsmooth multiobjective robust optimization problem with more than two locally Lipschitz objective functions and locally Lipschitz constraint functions in the face of data uncertainty. We prove a nonsmooth sufficient optimality theorem for a weakly robust efficient solution of the problem. We formulate a Wolfe type dual problem for the problem, and establish duality theorems which hold between the problem and its Wolfe type dual problem.

ON BOUNDEDNESS OF $\epsilon$-APPROXIMATE SOLUTION SET OF CONVEX OPTIMIZATION PROBLEMS

  • Kim, Gwi-Soo;Lee, Gue-Myung
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.375-381
    • /
    • 2008
  • Boundedness for the set of all the $\epsilon$-approximate solutions for convex optimization problems are considered. We give necessary and sufficient conditions for the sets of all the $\epsilon$-approximate solutions of a convex optimization problem involving finitely many convex functions and a convex semidefinite problem involving a linear matrix inequality to be bounded. Furthermore, we give examples illustrating our results for the boundedness.

  • PDF

Tolerance allotment with Design Centering considering Assembly Yield (조립수율을 고려한 공차할당 및 가공중심 결정)

  • 이진구
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.45-52
    • /
    • 2000
  • The purpose of this research was developing an integrated way to solve two typical tolerance optimization problem i.e. optimal tolerance allotment and design centering. A new problem definition design centering-tolerance allotment problem (DCTA) was proposed here for the first time and solved. Genetic algorithm and coarse Monte Carlo simulation were used to solve the stochastic optimization problem. Optimal costs were compared with the costs from the previous optimization strategies Significant cost reductions were achieved by DCTA scheme.

  • PDF

Formulation of Seismic Drift Control Method (동적 변위 제어법의 정식화)

  • 박효선;박성무;권준혁
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.481-488
    • /
    • 1998
  • The drift and inter-story drift control method for steel structures subjected to seismic forces is formulated into a structural optimization problem in this paper. The formulated optimization problem with constraints on drift, inter-story drifts, and member strengthes are transformed into an unconstrained optimization problem. For the solution of the tranformed optimization problem an searching algorithm based on the gradient projection method utilizing gradient information on eigenvalues and eigenvectors are developed and presented in detail. The performance of the proposed algorithm is demonstrated by application to drift control of a verifying example.

  • PDF