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ON BOUNDEDNESS OF ¢APPROXIMATE SOLUTION SET
OF CONVEX OPTIMIZATION PROBLEMS f
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ABSTRACT. Boundedness for the set of all the e-approximate solutions for
convex optimization problems are considered. We give necessary and suf-
ficient conditions for the sets of all the e-approximate solutions of a con-
vex optimization problem involving finitely many convex functions and
a convex semidefinite problem involving a linear matrix inequality to be
bounded. Furthermore, we give examples illustrating our results for the
boundedness.
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1. Introduction

Convex optimization problem consists of a convex objective function and con-
vex constraint functions. Recent research works and basic theories for convex
optimization problems can be referred in the well-known books [2]. Convex
semidefinite optimization problem is to optimize an objective convex function
over a linear matrix inequality. When the objective function is linear and the
corresponding matrices are diagonal, this problem become a linear optimization
problem. So, this problem is an extension of a linear optimization problem. On
1988, Mangasarian [9] presented initially simple and elegant characterizations
of the solution set of a convex optimization problem and gave conditions for
boundedness of the solution set of a convex quadratic optimization problem.
Since then, many authors have tried to extend the results of Mangasarian to
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several kinds of optimization problem ([3],[4],[6],[5],{7]). In particular, bound-
edness of solution sets for convex quadratic optimization problems [6], linear
fractional optimization problems [5] and pseudolinear optimization problems [4],
and boundedness of (properly, weakly) efficient solution sets for convex vector
optimization problems [3], linear fractional vector optimization problems [9] and
quadratic convex vector optimization problems [7] have been investigated. Very
recently, Kim et al. [9] studied e-optimality conditions and e-saddle point the-
orems for e-approximate solutions for convex semidefinite optimization problem
which hold under a weakened constraint qualification or which hold without any
constraint qualification.

In this paper, boundedness for the set of all the e-approximate solutions for
convex optimization problems are considered. We give necessary and sufficient
conditions for the sets of all the e-approximate solutions of a convex optimiza-
tion problem involving finitely many convex functions and a convex semidefinite
problem involving a linear matrix inequality to be bounded. Furthermore, we
give examples illustrating our results for the boundedness.

2. Preliminaries

Consider the following convex optimization problem (P):
(P) Minimize f(z)
subjectto z€ S:={zeR"|g(z) <0, i=1,---,m}

where f,g; : R* = R,i=1,-.. ,m, are convex functions.

Definition 2.1. Let € > 0. Then Z € S is called an e-approrimate solution of
(P) if for any z € S,

fz) +e2 f(z).

Definition 2.2 [1}. Let C be a nonempty set in R™. Then the asymptotic cone
of the set C, denoted by C, is

C’oo={d€]R"| It — +00, Iz € C with lim ﬂ=d}.

k—oo Ig

Proposition 2.1 [1]. Let C be a nonempty convex set in R™. Then the asymp-
totic cone Cy is a closed convex cone. Let g € C . Then

Coo i= {de R" |20+ A € clC,VA > 0}.

Definition 2.3 [1]. For any proper function f : R — RU {400}, there exists a
unique function f. : R® — RU {400}, associated with f, called the asymptotic
function such that epifoo = (epif)oo-
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Proposition 2.2 [1]. For any proper function f : R® — RU {+o0} and any
a € R such that lev(f,a) = {z| f(z) < a}, one has (lev(f, ) C lev(foo, d),
i.e.,

{z]7(z) < a}oo C {d] foo(d) < 0}.
Egquality holds in the clusion when f is lower semicontinuous, proper and con-
vez.

Proposition 2.3 [1]. Let ﬂ A; #£0 and fori € I, A; is a closed convez set in
i€l

(ﬂ A,) - [N (A)co-

R™. Then

iel i€l
Proposition 2.4 [1]. A set C CR" is bounded if and only if C = {0}.

Proposition 2.5 [1]. Let f : R™ — RU {+oo} be a proper, lower semicontinu-
ous, convex function. The asymptotic function is a positively homogeneous, lsc,
proper convex function, and for any d € R™ one has

Joold) = sup{f{x—i—d}—f(x) |z € domf}
and for all x € domf,

f(z +td) — f(z)

fold) = Jim TEE
_ et =S
>0 t

3. ¢-approximate solution set of convex optimization problems

Now we give necessary and sufficient conditions for the set of all the e
approximate solutions of (P) to be bounded.

Theorem 3.1. Let ¢ > 0. Assume that 11612 Flz) is finite, i.e., [ is bounded
x

below. Then the following are equivalent:
(1) de R" i f($+ d) S f(l‘), gi(.’l,' +d) S g,(:c),V:B € Rn, 1= 1" ot )m} = {O}’
(2) deR" % f($0+ )\d) < f((Eg), 9i($0 + )\d) < gi(xﬂ)aV/\ > O} i= 1:' o 1m}
= {0}, where zg is any given point in R™;
(3) Soo N {d €R™ | f(z0 + ) < f(30),¥A >0} = {0},

where xo is any given point in R™;
(4) The set of all € — approzimate solutions of (P) is compact.
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Proof. Let E be the set of all the e-approximate solutions of (P). Then, since
121; f(z) is finite, E # 0. Moreover,

E

sn{z | fs) < fw) + Yy € S}
SNz | f(@) < f) +e}-

y€eS

So, E is a nonempty closed and convex. Thus it follows from Proposition 2.4
that (4) holds if and only if Eo, = {0}. From Propositions 2.2 and 2.3, we get

En = Sooﬂ{delR"|f°°(d)§0}
- {de]R" | foo(d) €0, (gi)oo(d) <0, i=1,--- ,m}.

By Proposition 2.5, we have,
fOO(d) <0, (gi)w(d) <0,i=1,---,m
< f(z+d) < f(z), gz +d) <gi(z), i=1,---,m, for any z € R™.
<= for any given pointzy € R",

f(zo + M) < f(x0), g:(zo + Ad) < gi(zo), for any A > 0.

So we have the conclusion. |
Now we give examples to illustrate Theorem 3.1.

Example 3.1. Consider the following convex optimization problem:
(P)  Minimize flz)=—z
subject to  g(z) := [max{0,z}]> < 0.

The set of all e-approximate solutions of (P) is [—¢,0] . Moreover, S := {z €
R | g(z) <0} = (—00,0] and Seo = (—00,0]. Thus

Seo N {d € R |£(0+ \d) < £(0),VA > 0} = {0}.

We give an example to which Theorem 3.1 can not be applied.

Example 3.2. Consider the following convex optimization problem:
(P)  Minimize flz,y)=27%"Y
subject to  gi(z,y) =|z| -y <0,
92(z,y) = —z+y <0.

The set of all e- approximate solution of (P) is {(z,y) | ~logee < x4y, z =y, x>
0}. Moreover S := {(z,y) € R?| g1(z,y) <0, g2(z,y) <0} = {(z,9) |z =y, >
0} and Soo = {(2,9) |z = y,2 > 0}. Thus

Seo N{d € R?| f(0+ Xd) < f(0),¥A > 0} # {0}.
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4. e-approximate solution set of
convex semidefinite optimization problems

Consider the following convex semidefinite programming model problem:
(SDP) Minimize f(z)

m
subject to Fj + Z ;. F; >0,
i=1
where f: R™ — R is a convex function, and for i = 0,1,--- ,m, F; € S, , the
space of n X n real symmetric matrices. The space Sy, is partially ordered by the
Lowner order; that is, for M,N € §,, M > N if and only if M — N is positive
semidefinite. The inner product in S,, is defined by (M, N) = Tr|[MN], where
Tr|] is the trace operation. Let S := {M € S, | M > 0} . Then S is self-dual,
that is,
St=1{6€8,](6,2) >0VZ €S} =2S5.

m

Cleartly, A:::{:c cR™ ‘ Fy + inFi b O} is the feasible set of (SDP).
=1

Proposition 4.1. A, = {{(dy, - ,dn) ER™ | d1F1 + -+ + dnFr = 0}

Proof. Let B = {(d1, ' ,dmn) € R™ | d1Fy + -+ + dnFrn > 0}. Clearly
0 € B. Let d .= (di, "+ ,dm) € Aco be such that d # 0. Then for any z :=
(%1, ,Zm) € A and any a > 0 and any w € R,

m m m
wT [Fo + Z(:c,« + adi)Fi} w w’ (Fo + Z zﬁ}) w4+ aw” (Z dd*“,-) w
i=1 i=1

i=1
> 0

m
Thus wT <Z xiFi> w > 0 for anyw € R" and hence (dy,--+ ,dm) € B. Hence
i=1
A C B
Conversely, let d € B. Then for any x € A and any o > 0,

Fo+ i(mz +ad))F; = Fy+ f:wiﬂ' + af: d; F;
=1 i=1 i=1

e S4+8=S8
Thus £+ ad € Aw and hence B C Ay 0O

Theorem 4.1. Suppose that igg f(z) is finite. The set of all e-approzimate
x
solutions of (SDP) is bounded if and only if

{demm} id,-ﬂto}n{denzm | foold) <0} = {0}

i=1
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Proof. Let W be the set of all e-approximate solutions of (SDP). Then by
assumption, W # (. Also, from Propositions 2.2, 2.3 and 4.1, we have,

We = (Am{zenzm|f(x)+ezf(i), VaceA})oo
= Ao N{d€R™ | foo(d) < 0}
= {deR'"'idiFito}n{delefw(d)so}.

i=1

Hence W is bounded if and only if

{de]R’" ] f:diFi :o}n{deRm | foo(d) < 0} = {0}

=1
Now we will give examples illustrating Theorem 4.1.

Example 4.1. Consider the following convex semidefinite programming prob-
lem:

(SDP)  minimize  max{|z; + 1|, |z2|}

0 I 0
subject to T, T2 0 = 0.

0 0 z1+1

Let
0 00 010 0 0 0
FKF=|[00 0),F/ A=1{1 0 0] andFy3={0 1 0}.
0 01 0 01 0 00
Then

0 0 d
= d120,d220,~-d} <0, —d} >0
— dy =0, d; >0.

Let f(x1,z3) = maz{|z1 + 1], |z2| }. In fact,the feasible set for (SDP) is
A={(0,z3) eR?| 2, >0}

0 44 0
diFi+doF, =0 = dy do 0]*>0

We have
(Z1,Z2) is an e-approximate solution of (SDP).
< (%1,T2) € A and for any (z1,23) € A, f(z1,22) + € > f(T1,Z2).
<= T =0, T2 > 0 and maz{1,22} + ¢ > maz{l,Z2} for any z; > 0.
~T1=0,0<% <1l+e
Thus the set of all e-approximate solutions of (SDP) is {(0,%2) |0 < Z2 < 1+¢€}.
Hence the set of all e-approximate solution of (SDP) is bounded.
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Now we will show that using Theorem 4.1, the set of all e-approximate solu-

tions of (SDP) is bounded. If d; > 0, then we have, for any (z1,z2) € R?,

If

T

1

lim [y, 29 + tda) — fx1,%2)

foo(o) dg) = t—o0 t
i mesllen e 4 )} — mese + 1) ea)
t—o0 t
- i B + tda — maz{|z, + 1, |22}
t—o0 t
= dp.

da =0, feo(0,d2) = 0. Hence we have
{(d1,d2) € R*|diFiy + doFy > 0} N {(d1,da) € R?| foo(0,d2) <0}
= {(0,d2) € R?|dz > 0} N {(0,d2) € R?| foo(0,d2) <0}
= {(0’ 0)} .
hus by Theorem 4.1, the set of all e-approximate solutions of (SDP) is bounded.
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