• 제목/요약/키워드: Optimization of design variable

검색결과 596건 처리시간 0.024초

Topology Design Optimization of Electromagnetic Vibration Energy Harvester to Maximize Output Power

  • Lee, Jaewook;Yoon, Sang Won
    • Journal of Magnetics
    • /
    • 제18권3호
    • /
    • pp.283-288
    • /
    • 2013
  • This paper presents structural topology optimization that is being applied for the design of electromagnetic vibration energy harvester. The design goal is to maximize the root-mean-square value of output voltage generated by external vibration leading structures. To calculate the output voltage, the magnetic field analysis is performed by using the finite element method, and the obtained magnetic flux linkage is interpolated by using Lagrange polynomials. To achieve the design goal, permanent magnet is designed by using topology optimization. The analytical design sensitivity is derived from the adjoint variable method, and the formulated optimization problem is solved through the method of moving asymptotes (MMA). As optimization results, the optimal location and shape of the permanent magnet are provided when the magnetization direction is fixed. In addition, the optimization results including the design of magnetization direction are provided.

동하중을 받는 구조물의 최적화에 관한 연구동향 (An Overview of Optimization of Structures Subjected to Transient Loads)

  • 박경진;강병수
    • 대한기계학회논문집A
    • /
    • 제29권3호
    • /
    • pp.369-386
    • /
    • 2005
  • Various aspects of structural optimization techniques under transient loads are extensively reviewed. The main themes of the paper are treatment of time dependent constraints, calculation of design sensitivity, and approximation. Each subject is reviewed with the corresponding papers that have been published since 1970s. The treatment of time dependent constraints in both the direct method and the transformation method is discussed. Two ways of calculating design sensitivity of a structure under transient loads are discussed - direct differentiation method and adjoint variable method. The approximation concept mainly focuses on re- sponse surface method in crashworthiness and local approximation with the intermediate variable Especially, as an approximated optimization technique, Equivalent Static Load method which takes advantage of the well-established static response optimization technique is introduced. And as an application area of dynamic response optimization technique, the structural optimization in flexible multibody dynamic systems is re- viewed in the viewpoint of the above three themes

위상최적설계를 이용한 자석 형상 설계 (Magnet Design by using Topology Optimization)

  • 강제남;박승규;왕세명
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.598-600
    • /
    • 2002
  • The magnet design is investigated by using the topology optimization and FEM. The design sensitivity equation for topology optimization is derived using the adjoint variable method and the continuum approach. The proposed method is applied to the topology optimization of C-core.

  • PDF

가솔린 엔진의 성능, 연비, 배출 가스를 동시에 고려한 시뮬레이션 기반 흡기 다기관 길이 최적화 (Simulation-based Intake Manifold Runner Length Optimization for Improving Performance, Fuel Consumption and Emission of a Gasoline Engine)

  • 강용헌;최동훈
    • 한국자동차공학회논문집
    • /
    • 제18권5호
    • /
    • pp.62-67
    • /
    • 2010
  • Exhausting fossil fuel and increasing concern of air pollution have brought on the change of the focus of developing new vehicles from performance to fuel economy and emission. The gasoline engines adopting the naturally aspirated way use the throttle-body for engine load control. Therefore, its pumping loss increases more than that of the diesel engine, and also mostly operating in a partial load condition has bad influence on fuel economy and emission. In these days, the continuous variable valve timing system and variable induction system are adopted in order to improve fuel consumption and emission. In this study, we optimize the runner length and operate region of variable induction system to simulataneously improve the performance, fuel economy, and emission of gasoline engine with employing GT-Power as a CAE tool for engine analysis and PIAnO as PIDO tool for process integration and design optimization.

탄성콘크리트 댐의 모양최적설계 (Shape Optimal Design of Elastic Concrete Dam)

  • 유영면
    • 대한토목학회논문집
    • /
    • 제5권4호
    • /
    • pp.9-14
    • /
    • 1985
  • 본 연구에서는 평면 변형도상태 하에서 정수압을 받는 2차원 탄성 콘크리트 댐의 단면 모양을 최적화함으로써 댐의 질량을 최소화하였다. 최적화 문제의 목적함수로는 댐의 단면적이, 제약조건으로는 주응력 제약조건과 두께 제약조건들이, 설계변수로는 모델 경계의 모양이 채택되었다. 모델 영역의 변화에 따른 설계감도해석을 위해 최적화 문제를 범함수 형태로 변환한 후 연속체 역학의 물질미분 개념과 Adjoint Variable Technique 을 활용하였고, 최적화를 위해서는 Gradient Projection Method 를 사용하였다. 연구 결과 본 연구에 적용된 이론이 효율적이고 실제 탄성구조물 설계에 광범위하게 응용될 수 있음이 밝혀졌다.

  • PDF

계층적 크리깅 모델을 이용한 설계 최적화 기법의 유용성 검증 (Feasibility Study of Hierarchical Kriging Model in the Design Optimization Process)

  • 하홍근;오세종;이관중
    • 한국항공우주학회지
    • /
    • 제42권2호
    • /
    • pp.108-118
    • /
    • 2014
  • 근사모델을 이용한 최적설계 문제에서는 설계변수의 수가 증가함에 따라 근사모델의 정확도를 확보하기 위한 계산 횟수가 급격히 증가한다. 이를 해결하기 위해 저정확도 모델을 바탕으로 고정확도 모델로 보정하는 Variable-Fidelity Modeling을 이용하였다. 본 논문에서 Variable-Fidelity Model로는 계층적 크리깅 모델을 이용하였으며, 다목적 유전자 알고리즘과 결합하여 최적화 프레임워크를 제안하였다. 이 방법의 유용성을 검증하기 위하여 천음속 영역에 대한 익형 최적 설계를 하였다. 설계변수로는 PARSEC의 파라메터를 이용하였으며, 서로 다른 격자수를 가지는 경우 그리고 서로 다른 정확도를 가지는 해석자를 이용한 경우에 관하여 해석을 수행하였다. 검증을 위해 단일 정확도 모델에 대한 최적화 결과와 비교하였다. 모든 경우에 관하여 파레토 라인이 유사하게 나오는 것을 확인 할 수 있었으며, 계산시간은 계층적 크리깅 모델을 이용한 Variable-Fidelity Model이 단일 정확도 모델에 비하여 훨씬 줄어들었다. 이를 바탕으로 본 논문의 방법이 단일 정확도를 가지는 모델에 대한 최적화 방법과 유사한 정확도를 가지며 더욱 효율적임을 확인 할 수 있다.

실험계획법을 이용한 측면 에어백 인플레이터 최적 설계 (Optimizing Design of Side Airbag Inflator using DOE Method)

  • 김병우;허진
    • 한국정밀공학회지
    • /
    • 제28권10호
    • /
    • pp.1189-1195
    • /
    • 2011
  • For side airbag, the pipe type inflators have been wide used while the disk type inflators have been used for front airbag. For helping to prevent injury and death the airbag inflator system should be design with great care. The present study deal with optimizing the design of side airbag inflator by finite element analysis and design of experiment method. An optimization process was integrated to determine the optimum design variable values related to the side airbag inflator. Free shape optimization method has been carried out to find a optimal shape on an side airbag inflator model. Optimization of the air bag inflator was successfully developed using Sharpe optimization was carried out to find a new geometry. The improved results compared to the base design specification were achieved from design of experiment and optimization.

프리스트레스트 콘크리트 구조물의 합리적인 최적설계 (Reasonable Optimum Design of Prestressed Concrete Structures)

  • 김종옥
    • 한국농공학회논문집
    • /
    • 제46권2호
    • /
    • pp.77-89
    • /
    • 2004
  • This study was carried out to find out the reasonable optimum design method for the design of prestressed concrete structures. The optimum design problems were formulated and computer programs to solve these problems were developed. To test the reliablity, efficiency, possibility of application and reasonablity of optimum design problems and computer programs, both continuous optimization method and mixed-discrete optimization method were applied to the design of prestressed concrete composite girder and application results were discussed. It is proved that mixed-discrete optimization method is more reliable, efficient and reasonable than continuous optimization method for the optimum design of prestressed concrete structures.

구조 최적 설계기법을 이용한 ULSAB 개념의 자동차 도어 설계 (The Automotive Door Design with the ULSAB Concept Using Structural Optimization)

  • 신정규;송세일;이권희;박경진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.187-194
    • /
    • 2000
  • Weight reduction for an automobile body is being sought for the fuel efficiency and the energy conservation. One way of the efforts is adopting Ultra Light Steel Auto Body (ULSAB) concept. The ULSAB concept can be used for the light weight of an automobile door with the tailor welded blank (TWB). A design process is defined for the TWB. The inner panel of door is designed by the TWB and optimization. The design starts from an existing component. At first, the hinge and inner reinforcements are removed. In the conceptual design stage, topology optimization is conducted to find the distribution of variable thicknesses. The number of parts and the welding lines are determined from the topology design. In the detailed design process, size optimization is carried out to find thickness while stiffness constraints are satisfied. The final parting lines are determined by shape optimization.

  • PDF

설계유량을 고려한 천음속 축류압축기 동익의 삼차원 형상최적설계 (Aerodynamic Design Optimization of A Transonic Axial Compressor Rotor with Readjustment of A Design Point)

  • 고우식;김광용;고성호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.639-645
    • /
    • 2003
  • Design optimization of a transonic compressor rotor (NASA rotor 37) using response surface method and three-dimensional Navier-Stokes analysis has been carried out in this work. Baldwin-Lomax turbulence model was used in the flow analysis. Two design variables were selected to optimize the stacking line of the blade, and mass flow was used as a design variable, as well, to obtain new design point at peak efficiency. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, adiabatic efficiency was successfully improved, and new design mass flow that is appropriate to an improved blade was obtained. Also, it is found that the design process provides reliable design of a turbomachinery blade with reasonable computing time.

  • PDF