DOI QR코드

DOI QR Code

An Overview of Optimization of Structures Subjected to Transient Loads

동하중을 받는 구조물의 최적화에 관한 연구동향

  • 박경진 (한양대학교 기계공학과) ;
  • 강병수 (한양대학교 최적설계신기술연구센터)
  • Published : 2005.03.01

Abstract

Various aspects of structural optimization techniques under transient loads are extensively reviewed. The main themes of the paper are treatment of time dependent constraints, calculation of design sensitivity, and approximation. Each subject is reviewed with the corresponding papers that have been published since 1970s. The treatment of time dependent constraints in both the direct method and the transformation method is discussed. Two ways of calculating design sensitivity of a structure under transient loads are discussed - direct differentiation method and adjoint variable method. The approximation concept mainly focuses on re- sponse surface method in crashworthiness and local approximation with the intermediate variable Especially, as an approximated optimization technique, Equivalent Static Load method which takes advantage of the well-established static response optimization technique is introduced. And as an application area of dynamic response optimization technique, the structural optimization in flexible multibody dynamic systems is re- viewed in the viewpoint of the above three themes

Keywords

References

  1. Fox, R.L. and Kapoor, M.P., 1970, 'Structural Optimization in the Dynamic Regime: A Computational Approach,' AIAA Journal, Vol. 8, No. 10, pp. 1798-1804 https://doi.org/10.2514/3.5993
  2. Willmert, K.D. and Fox, R.L., 1972, 'Optimum Design of a Linear Multi-Degree-of-Freedom Shock Isolation System,' Journal of Engineering for Industry, Transactions of the ASME, Vol. 94, No. 4, pp. 465-471 https://doi.org/10.1115/1.3428177
  3. Afimiwala, K.A. and Mayne, R.W., 1974, 'Optimal Design of an Impact Absorber,' Journal of Engineering for Industry, Transactions of the ASME, Vol. 96, No. 1, pp. 124-130 https://doi.org/10.1115/1.3438286
  4. Pierson, B.L., 1972, 'A Survey of Optimal Structural Design under Dynamic Constraints,' International Journal for Numerical Methods in Engineering, Vol. 4, No. 4, pp. 491-499 https://doi.org/10.1002/nme.1620040404
  5. Cassis, J.H. and Schmit, L.A., 1976, 'Optimum Structural Design with Dynamic Constraints,' Journal of Structural Division, Proceedings of the ASCE, Vol. 102, No. ST 10, pp. 2053-2071
  6. Johnson, E.H., 1976, 'Disjoint Design Spaces in the Optimization of Harmonically Excited Structures,' AIAA Journal, Vol. 14, 259-261 https://doi.org/10.2514/3.7084
  7. Mills-Curran, W.C. and Schmit, L.A., 1985, 'Structural Optimization with Dynamic Behavior Constraints,' AIAA Journal, Vol. 23, No. 1, pp. 131-138
  8. Pantelides, C.P. and Tzan, S.R., 1997, 'Optimal Design of Dynamically Constrained Structures,' Computers & Structures, Vol. 62, No. 1, pp. 141-149 https://doi.org/10.1016/S0045-7949(96)00243-X
  9. Pantelides, C.P. and Tzan, S.R., 2000, 'Modified Iterated Simulated Annealing Algorithm for Structural Synthesis,' Advances in Engineering Software, Vol. 31, No. 6, pp. 391-400 https://doi.org/10.1016/S0965-9978(00)00007-7
  10. Baumal, A.E., Mcphee, J.J. and Calamai, P.H., 1998, 'Application of Genetic Algorithms to the Design Optimization of an Active Vehicle Suspension System,' Computer Methods in Applied Mechanics and Engineering, Vol. 163, No. 1-4, pp. 87-94 https://doi.org/10.1016/S0045-7825(98)00004-8
  11. Kocer, F.Y. and Arora, J.S., 1999, 'Optimal Design of H-Frame Transmission Poles for Earthquake Loading,' Journal of Structural Engineering, Vol. 125, No. 11, pp. 1299-1308 https://doi.org/10.1061/(ASCE)0733-9445
  12. Zhu, Y., Qiu, J. and Tani, J., 2001, 'Simultaneous Optimization of a Two-Link Flexible Robot Arm,' Journal of Robotic Systems, Vol. 18, No. 1, pp. 29-38 https://doi.org/10.1002/1097-4563(200101)18:1<29::AID-ROB3>3.0.CO;2-C
  13. Bucher, I., 2002, 'Parametric Optimization of Structures under Combined Base Motion Direct Forces and Static Loading,' Journal of Vibration and Acoustics, Transactions of the ASME, Vol. 124, 132-140 https://doi.org/10.1115/1.1424888
  14. Cardoso, J.B. and Arora, J.S., 1992, 'Design Sensitivity Analysis of Nonlinear Dynamic Response of Structural and Mechanical Systems,' Structural Optimization, Vol. 4, No. 1, pp. 37-46 https://doi.org/10.1007/BF01894079
  15. Kulkarni, M. and Noor, A.K., 1995, 'Sensitivity Analysis of the Nonlinear Dynamic Viscoplastic Response of 2-D Structures with Respect to Material Parameters,' International Journal for Numerical Methods in Engineering, Vol. 38, No. 2, pp. 183-198 https://doi.org/10.1002/nme.1620380203
  16. Uwe, S. and Pilkey, W.D., 1996, 'Optimal Design of Structures under Impact Loading,' Shock and Vibration, Vol. 3, No. 1, pp. 69-91 https://doi.org/10.1155/1996/531935
  17. Sousa, L.G., Cardoso, J.B. and Valido, A.J., 1997, 'Optimal Cross-Section and Configuration Design of Elastic-Plastic Structures Subject to Dynamic Cyclic Loading,' Structural Optimization, Vol. 13, No. 2-3, pp. 112-118 https://doi.org/10.1007/BF01199229
  18. Arora, J.S. and Dutta, A., 1997, 'Explicit and Im-plicit Methods for Design Sensitivity Analysis of Nonlinear Structures under Dynamic Loads,' Applied Mechanics Reviews, Transactions of the ASME, Vol. 50, No. 11, part 2, pp. S11-S19 https://doi.org/10.1115/1.3101823
  19. Choi, K.K. and Cho, S., Year. 'Design Sensitivity Analysis and Optimization of Non-Linear Structural Dynamics Using Dyna3d.' in Seventh AIAA/USAF/ NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. St. Louis, MO, pp. 1071-1081
  20. Kim, N.H. and Choi, K.K., 2001, 'Design Sensitiv-ity Analysis and Optimization of Nonlinear Transient Dynamics,' Mechanics of Structures and Machines, Vol. 29, No. 3, pp. 351-371 https://doi.org/10.1081/SME-100105655
  21. Stupkiewicz, S., 2001, 'Approximate Response Sensitivities for Nonlinear Problems in Explicit Dynamic Formulation,' Structural and Multidisciplinary Optimization, Vol. 21, No. 4, pp. 283-291 https://doi.org/10.1007/s001580100105
  22. Schmit, L.A., 1981, 'Structural Synthesis-Its Genesis and Development,' AIAA Journal, Vol. 19, No. 10, pp. 1249-1264 https://doi.org/10.2514/3.7859
  23. Vanderplaats, G.N., 1984, Numerical Optimization Techniques for Engineering Design, McGraw-Hill Book Company, NY
  24. Arora, J.S., 1989, Introduction to Optimum Design, McGraw-Hill Book Company, NY
  25. Haftka, R.T. and Gurdal, Z., 1992, Elements of Structural Optimization, Kluwer Academic Publisher, Dordrecht
  26. Vanderplaats, G.N., 1999, 'Structural Design Optimization Status and Direction,' Journal of Aircraft, Vol. 36, No. l,pp. 11-20 https://doi.org/10.2514/2.2440
  27. Vanderplaats, G.N., 1993, '30 Years of Modern Structural Optimization,' Advances in Engineering Software, Vol. 16, No. 2, pp. 81-88 https://doi.org/10.1016/0965-9978(93)90052-U
  28. Parmee, I.C. and Hajela, P., 2002, Optimization in Industry, Springer-Verlag, London
  29. Haug, E.J. and Arora, J.S., 1979, Applied Optimal Design: Mechanical and Structural Systems, Wiley-Interscience, New York
  30. Kim, M.S. and Choi, D.H., 2001, 'Direct Treatment of a Max-Value Cost Function in Parametric Optimization,' International Journal for Numerical Methods in Engineering, Vol. 50, No. 1, pp. 169-180 https://doi.org/10.1002/1097-0207(20010110)50:1<169::AID-NME67>3.0.CO;2-L
  31. Rockafellar, R.T., 1973, 'The Multiplier Method of Hestenes and Powell Applied to Convex Programming,' Journal of Optimization Theory and Applications, Vol. 12, No. 6, pp. 555-562 https://doi.org/10.1007/BF00934777
  32. Arora, J.S., Chahande, A.I. and Paeng, J.K., 1991, 'Multiplier Methods for Engineering Optimization,' International Journal for Numerical Methods in Engineering, Vol. 32, No. 7, pp. 1485-1525 https://doi.org/10.1002/nme.1620320706
  33. Kocer, F.Y. and Arora, J.S., 2002, 'Optimal Design of Latticed Towers Subjected to Earthquake Loading,' Journal of Structural Engineering, Vol. 128, No. 2, pp. 197-204 https://doi.org/10.1061/(ASCE)0733-9445(2002)128:2(197)
  34. Feng, T.T., Arora, J.S., and Haug, E.J., 1977, 'Optimal Structural Design under Dynamic Loads,' International Journal for Numerical Methods in Engineering, Vol. 11, pp. 39-52 https://doi.org/10.1002/nme.1620110106
  35. C.C. Hsieh and J.S. Arora, 1984, 'Design Sensitivity Analysis and Optimization of Dynamic Response,' Computer Methods in Applied Mechanics and Engineering, Vol. 43, pp. 195-219 https://doi.org/10.1016/0045-7825(84)90005-7
  36. Khan, M.R., Thornton, W.A. and Willmert, K.D., 1978, 'Optimality Criterion Techniques Applied to Mechanical Design,' Journal of Mechanical Design-Transactions of the ASME, Vol. 100, No. 2, pp. 319-327 https://doi.org/10.1115/1.3453918
  37. Oral, S. and Ider, S., 1997, 'Optimum Design of High-Speed Flexible Robotic Arms with Dynamic Behavior Constraints,' Computers & Structures, Vol. 65, No. 2, pp. 255-259 https://doi.org/10.1016/S0045-7949(96)00269-6
  38. Grandhi, R.V., Haftka, R.T. and Watson, L.T., 1986, 'Design-Oriented Identification of Critical Times in Transient Response,' AIAA Journal, Vol. 24, No. 4, pp. 649-656 https://doi.org/10.2514/3.9321
  39. Grandhi, R.V., Haftka, R.T. and Watson, L.T., 1986, 'Efficient Identification of Critical Stresses in Structures Subjected to Dynamic Loads,' Computers & Structures, Vol. 22, No. 3, pp. 373-386 https://doi.org/10.1016/0045-7949(86)90041-6
  40. Hsieh, C.C. and Arora, J.S., 1985, 'A Hibrid Formulation for Treatment of Point-Wise State Variable Constraints in Dynamic Response Optimization,' Computer Methods in Applied Mechanics and Engineering, Vol. 48, No. 2, pp. 171-189 https://doi.org/10.1016/0045-7825(85)90103-3
  41. Hsieh, C.C. and Arora, J.S., 1985, 'An Efficient Method for Dynamic Response Optimization,' AIAA Journal, Vol. 23, No. 9, pp. 1484-1486 https://doi.org/10.2514/3.9109
  42. Kang, B. S., 2003, 'On Optimality of the Solution Obtained by Equivalent Static Load Method and Its Application to Flexible Multibody Dynamic Systems,' Ph.D. Thesis, Hanyang University, Korea
  43. Kang, B.S., Choi, W.S. and Park, G.J., 2001, 'Structural Optimization Under Equivalent Static Loads Transformed from Dynamic Loads Based on Displacement,' Computers & Structures, Vol. 79, No. 2, pp. 145-154 https://doi.org/10.1016/S0045-7949(00)00127-9
  44. Kang, B.S. and Park, G.J., 2003, 'Optimization of Flexible Multibody Dynamic Systems Using the Equivalent Static Load Method,' AIAA Journal, Accepted
  45. Etman, L.F.P. and Van Campen, D.H., 1998, 'Design Optimization of Multibody Systems by Sequential Approximation,' Multibody System Dynamics, Vol. 2, No. 4, pp. 393-415 https://doi.org/10.1023/A:1009780119839
  46. Park, K.J., Lee, J.N. and Park, GJ., 2003, 'Structural Shape Optimization under Static Loads Transformed Form Dynamic Loads,' Transactions of the KSME, A, Vol. 27, No. 8, pp. 1363-1370 https://doi.org/10.3795/KSME-A.2003.27.8.1363
  47. Lim, O.K. and Arora, J.S., 1987, 'Dynamic Response Optimization Using an Active Set Rqp Algorithm,' International Journal for Numerical Methods in Engineering, Vol. 24, No. 10, pp. 1827-1842 https://doi.org/10.1002/nme.1620241002
  48. Paeng, J.K. and Arora, J.S., 1989, 'Dynamic Response Optimization of Mechanical Systmes with Multiplier Methods,' Journal of Mechanisms, Transmissions, and A utomation in Design, Transactions of the ASME, Vol. 111, No. 1, pp. 73-80 https://doi.org/10.1115/1.3258974
  49. Chahande, A.I. and Arora, J.S., 1993, 'Development of a Multiplier Method for Dynamic Response Optimization Problems,' Structural Optimization, Vol. 6, No. 2, pp. 69-78 https://doi.org/10.1007/BF01743338
  50. Chahande, A.I. and Arora, J.S., 1994, 'Optimization of Large Structures Subjected to Dynamic Loads with Time Multiplier Method,' International Journal for Numerical Methods in Engineering, Vol. 37, No. 3, pp. 413-430 https://doi.org/10.1002/nme.1620370304
  51. Kim, M.S. and Choi, D.H., 1997, 'Multibody Dynamic Response Optimization with Alm and Approximation Line Search,' Multibody System Dynamics, Vol. l,No. 1, pp. 47-64 https://doi.org/10.1023/A:1009711223161
  52. Silva, M.A., Arora, J.S., Swan, C.C. and Rmlrf, B., 2002, 'Optimization of Elevated Concrete Foundations for Vibrating Machines,' Journal of Structural Engineering, Vol. 128, No. 11, pp. 1470-1479 https://doi.org/10.1061/(ASCE)0733-9445(2002)128:11(1470)
  53. Park, H.S. and Kwon, J.H., 2003, 'Optimal Drift Design Model for Multi-Story Buildings Subjected to Dynamic Lateral Forces,' The Structural Design of Tall and Speciall Buildings, Vol. 12, No. 4, pp. 317-333 https://doi.org/10.1002/tal.224
  54. Kim, M.S. and Choi, D.H., 2000, 'A New Penalty Parameter Update Rule in the Augmented Lagrange Multiplier Method for Dynamic Response Optimization,' KSME International Journal, Vol. 14, No. 10, pp. 1122-1130 https://doi.org/10.1007/BF03185066
  55. Haftka, R. T. and Adelman, H. M., 1989,' Recent Developments ifn Structural Sensitivity Analysis,' Structural Optimization, pp.137-151 https://doi.org/10.1007/BF01637334
  56. Haug, E.J., Choi, K.K., and Komkov, V., 1986, Design Sensitivity Analysis of Structural Systems. Academic Press, Inc., Orlando
  57. Adelman, H.M. and Haftka, R.T., 1986, 'Sensitivity Analysis of Discrete Structural Systems,' AIAA Journal. Vol. 24, No. 5, pp. 823-832 https://doi.org/10.2514/3.48671
  58. Hsieh, C.C. and Arora, J.S., 1985, 'Structural Design Sensitivity Analysis with General Boundary Conditions-Dynamic Problem,' International Journal for Numerical Methods in Engineering, Vol. 21, No. 2, pp. 267-283 https://doi.org/10.1002/nme.1620210206
  59. Anderson, K.S. and Hsu, Y.H., 2002, 'Analytical Fully-Recursive Sensitivity Analysis for Multibody Dynamic Chain Systems,' Multibody System Dynamics, Vol. 8, No. 1, pp. 1-27 https://doi.org/10.1023/A:1015867515213
  60. Greene, W.H. and Haftka, R.T., 1991, 'Computational Aspects of Sensitivity Calculations in Linear Transient Structural Analysis,' Structural Optimization, Vol. 3, No. 3, pp. 176-201 https://doi.org/10.1007/BF01743074
  61. Sun, T.-C., 1996, 'Design Sensitivity Analysis and Optimization of Nonliear Dynamic Response for a Motorcycle Driving on a Half-Sine Bump Road,' Structural Optimization, Vol. 11, No. 2, pp. 113-119 https://doi.org/10.1007/BF01376854
  62. Bathe, K.-J., 1996, Finite Element Procedures, Prentice-Hall Inc., NJ
  63. Cook, R.D., Malkus, D.S. and Plesha, M.E., 1989, Concepts and Applications of Finite Element Analysis. John Wiley & Sons, Inc., NY
  64. Yamakawa, H., 1984, 'Optimum Structural Designs for Dynamic Response,' in New Directions in Optimum Structural Design, E. Atrek, R.H. Gallagher, K.M. Ragsdell, and O.C. Zienkiewicz, John Wiley & Sons, Ltd., pp. 249-266
  65. Wang, S. and Choi, K.K., 1992, 'Continuum Design Sensitivity of Transient Response Using Ritz and Mde Aceleration Method,' AIAA Journal, Vol. 30, No. 4, pp. 1099-1109 https://doi.org/10.2514/3.11032
  66. Dias, J.M.P. and Pereira, M.S., 1997, 'Sensitivity Analysis of Rigid-Flexible Multibody Systems,' Multibody System Dynamics, Vol. 1, No. 3, pp. 303-322 https://doi.org/10.1023/A:1009790202712
  67. Fox, R.L. and Kapoor, M.P., 1968, 'Rates of Change of Eigenvalues and Eigenvectors,' AIAA Journal, Vol. 6, 2426-2429 https://doi.org/10.2514/3.5008
  68. Nelson, R.B., 1976, 'Simplified Calculation of Eigenvector Derivatives,' AIAA Journal, Vol. 14, No. 9, pp. 1201-1205 https://doi.org/10.2514/3.7211
  69. Choi, K.K., Haug, E.J. and Seong, H.G., 1983, 'An Iterative Method for Finite Dimensional Structural Optimization Problems with Repeated Eigenvalues,' International Journal for Numerical Methods in Engineering, Vol. 19, No. 1, pp. 93-112 https://doi.org/10.1002/nme.1620190110
  70. Ojalvo, I.U., 1988, 'Efficient Computation of Modal Sensitivities for Systems with Repeated Frequencies,' AIAA Journal, Vol. 26, No. 3, pp. 361-366 https://doi.org/10.2514/3.9897
  71. Wang, B.P., 1991, 'Improved Approximate Methods for Computing Eigenvector Derivatives in Structural Dynamics,' AIAA Journal, Vol. 29, No. 6, pp. 1018-1020 https://doi.org/10.2514/3.59945
  72. Lee, T.H., 1999, 'An Adjoint Variable Method for Structural Design Sensitivity Analysis of a Distinct Eigenvalue Problem,' KSME International Journal, Vol. 13, No. 6, pp. 470-479 https://doi.org/10.1007/BF02947716
  73. Moore, G.J., 1994, Msc/Nastran Design Sensitivity and Optimization, The MacNeal-Schwendler Corporation, CA
  74. Kang, B.S., Kim, J.S. and Park, G.J., 2004, 'An Investigation of Dynamic Characteristics of Structures in Optimization,' in KSME Annual Spring Meeting, pp. 1011-1016
  75. Dutta, A. and Ramakrishnan, C.V., 1998, 'Accurate Computation of Design Sensitivities for Structures under Transient Dynamic Loads with Constraints on Stress,' Computers & Structures, Vol. 66, No. 4, pp. 463-472 https://doi.org/10.1016/S0045-7949(97)00053-9
  76. Dutta, A. and Ramakrishnan, C.V., 1998, 'Accurate Computation of Design Sensitivities for Structures under Transient Dynamic Loads Using Time Marching Scheme,' International Journal for Numerical Methods in Engineering, Vol. 41, No. 6, pp. 977-999 https://doi.org/10.1002/(SICI)1097-0207(19980330)41:6<977::AID-NME281>3.0.CO;2-Z
  77. Dutta, A. and Ramakrishnan, C.V., 2000, 'Accurate Computation of Design Derivatives for Plates and Shells under Transient Dynamic Loads,' Engineering Computation, Vol. 17, No. 1, pp. 7-27 https://doi.org/10.1108/02644400010308044
  78. Paul, A.C., Dutta, A. and Ramakrishnan, C.V., 1996, 'Accurate Computation of Design Sensitivities for Dynamically Loaded Structures with Displacement Constraints,' AIAA Journal, Vol. 34, No. 8, pp. 1670-1677 https://doi.org/10.2514/3.13288
  79. Arora, J.S. and Haug, E.J., 1979, 'Methods of Design Sensitivity Analysis in Structural Optimization,' AIAA Journal, Vol. 17, No. 9, pp. 970-974 https://doi.org/10.2514/3.61260
  80. Arora, J. S. and Cardoso, J.E.B.,1989, 'A Design Sensitivity Analysis Principle and Its Implementation into ADINA,'Computers & Structures, Vol. 32. pp 691-705 https://doi.org/10.1016/0045-7949(89)90357-X
  81. Tsay, J.J. and Arora, J.S., 1990, Nonlinear Structural Design Sensitivity Analysis for Path Dependent Problems. Part 1: General Theory, Comp. Meth. Appl. Mech. Engng, Vol. 81, pp. 183-208 https://doi.org/10.1016/0045-7825(90)90109-Y
  82. Tortorelli, D.A., Lu, S.C.Y. and Haber, R.B., 1990, 'Design Sensitivity Analysis for Elastodynamic Systems,' Mechanics of Structures and Machines, Vol. 18, No. 1, pp. 77-106 https://doi.org/10.1080/08905459008915660
  83. Tortorelli, D.A., Lu, S.C.Y. and Haber, R.B., 1991, 'Adjoint Sensitivity Analysis for Nonlinear Dynamic Thermoelastic Systems,' AIAA Journal, Vol. 29, No. 2, pp. 253-263 https://doi.org/10.2514/3.10572
  84. Arora, J.S. and Cardoso, J.B., 1992, 'Variational Principle for Shape Design Sensitivity Analysis,' AIAA Journal, Vol. 30, No. 2, pp. 538-547 https://doi.org/10.2514/3.10949
  85. Hsieh, C.C. and Arora, J.S., 1986, 'Algorithms for Point-Wise State Variable Constraints in Structural Optimization,' Computers & Structures, Vol. 22, No. 3, pp. 225-238 https://doi.org/10.1016/0045-7949(86)90028-3
  86. Argyris, J.H. and Scharpf, D.W., 1969, 'Finite Element in Time and Space,' Nuclear Engineering and Design, Vol. 10, No. 4, pp. 456-464 https://doi.org/10.1016/0029-5493(69)90081-8
  87. Fung, T.C., Fan, S.C. and Sheng, G., 1998, 'Mixed Time Finite Elements for Vibration Response Analysis,' Journal of Sound and Vibration, Vol. 213, No. 3, pp. 409-428 https://doi.org/10.1006/jsvi.1997.1464
  88. Suk, J. and Kim, Y., 1998, 'Slew Maneuver of Flexible Space Structures Using Time Finite Element Analysis,' AIAA Journal, Vol. 36, No. 10, pp. 1938-1940 https://doi.org/10.2514/2.289
  89. Kapania, R.K. and Park, S., 1996, 'Nonlinear Transient Response and Its Sensitivity Using Finite Elements in Time,' Computational Mechanics, Vol. 17, No 5, pp. 306-317 https://doi.org/10.1007/BF00368553
  90. Park, S., Kapania, R.K. and Kim, S.J., 1999, 'Nonlinear Transient Response and Second-Order Sensitivity Using Time Finite Element Method,' AIAA Journal, Vol. 37, No. 5, pp. 613-622 https://doi.org/10.2514/2.761
  91. Park, S. and Kapania, R.K., 1998, 'Comparison of Various Orthogonal Polynomials in Hp-Version Time Finite Element Method,' AIAA Journal, Vol. 36, No. 4, pp. 651-655 https://doi.org/10.2514/2.419
  92. Gu, Y.X., Chen, B.S., Zhang, H.W. and Grandhi, R.V, 2002, 'A Sensitivity Analysis Method for Linear and Nonlinearr Transient Heat Conduction with Precise Time Integration,' Structural and Multidisciplinary Optimization, Vol. 24, No. 1, pp. 23-37 https://doi.org/10.1007/s00158-002-0211-5
  93. Chen, B.S., Gu, Y.X., Zhang, H.W. and Zhao, G.Z., 2003, 'Structural Design Optimization on Thermally Induced Vibration,' International Journal for Numerical Methods in Engineering, Vol. 58, No. 8, pp. 1187-1212 https://doi.org/10.1002/nme.814
  94. Zhong, W.X. and Williams, F.W., 1994, 'A Precise Time Step Integration Method,' Mechanical Engineering Science, Proceedings of the Institution of Mechanical Engineers. Part C, Vol. 208, No. 6, pp. 427-430 https://doi.org/10.1243/PIME_PROC_1994_208_148_02
  95. Lin, J.H., Chen, W.P. and Williams, F.W., 1995, 'A High Precision Direct Integration Scheme for Structures Subjected to Transient Dynamic Loading,' Computers & Structures, Vol. 56, No. 1, pp. 113-120 https://doi.org/10.1016/0045-7949(94)00537-D
  96. Gu, Y.X., Chen, B.S., Zhang, H.W. and Guan, Z.Q., 2001, 'Precise Time-Integration Method with Dimensional Expanding for Structural Dynamic Equations,' AIAA Journal, Vol. 39, No. 12, pp. 2394-2399 https://doi.org/10.2514/2.1248
  97. Wang, B.P and Lu, C.M., Year. 'A New Method for Transient Response Sensitivity Analysis in Structural Dynamics.' in 1st Pacific International Conference. Tainan, Taiwan, pp. 1298-1305
  98. Barthelemy, J.F.M. and Haftka, R.T., 1993, 'Approximation Concepts for Optimum Structural Design a Review,' Structural Optimization, Vol. 5, No. 3, pp. 129-144 https://doi.org/10.1007/BF01743349
  99. Myers, R.H. and Montgomery, D.C., 1995, Response Surface Methodology, John Wiley & Sons, Inc., NY
  100. Kurtaran, H. and Eskandarian, A., 2001, 'Design Optimization of Multi-Body Systems under Impact Loading by Response Surface Methodology,' Proceedings of the Institution of Mechanical Engineers. Part K -Journal of Multi-body Dynamics, Vol. 215, No. 4, pp. 173-185 https://doi.org/10.1243/1464419011544457
  101. Kurtaran, H., Eskandarian, A., Marzougui, D. and Bedewi, N.E., 2002, 'Crashworthiness Design Optimization Using Successive Response Surface Approximations,' Computational Mechanics, Vol. 29, No. 4-5, pp. 409-421 https://doi.org/10.1007/s00466-002-0351-x
  102. Marklund, P.O. and Nilsson, L., 2001, 'Optimization of a Car Body Component Subjected to Side Impact,' Structural and Multidisciplinary Optimization, Vol. 21, No. 5, pp. 383-392 https://doi.org/10.1007/s001580100117
  103. Stander, N. and Craig, K.J., 2002, 'On the Robustness of a Simple Domain Reduction Scheme for Simulation-Based Optimization,' Engineering Computation, Vol. 19, No. 4, pp. 431-450 https://doi.org/10.1108/02644400210430190
  104. Craig, K.J., Stander, N. and Balasubramanyam, S., 2003, 'Worst-Case Design in Head Impact Carshworthiness Optimiztion,' International Journal for Numerical Methods in Engineering, Vol. 57, No. 6, pp. 795-817 https://doi.org/10.1002/nme.704
  105. Oblak, M.M., Lesnika, A.S. and Butinar, B.J., 2002, 'Optimum Design of Stochastically Excited Non-Linear Dynamic Systems without Geometric Constraints,' International Journal for Numerical Methods in Engineering, Vol. 53, No. 11, pp. 2429-2443 https://doi.org/10.1002/nme.330
  106. Kegl, M.S. and Oblak, M.M., 1997, 'Optimization of Mechanical Systems: On Non-Linear First-Order Approximation with an Additive Convex Term,' Communications in Numerical Methods in Engineering, Vol. 13, No. l,pp. 13-20 https://doi.org/10.1002/(SICI)1099-0887(199701)13:1<13::AID-CNM33>3.0.CO;2-E
  107. Jensen, H.A., 2001, 'Structural Optimal Design of Systems with Imprecise Properties: A Possibilistic Approach,' Advances in Engineering Software, Vol. 32, No. 12, pp. 937-948 https://doi.org/10.1016/S0965-9978(01)00038-2
  108. Salajegheh, E. and Salajegheh, J., 2002, 'Optimum Design of Structures with Discrete Variables Using Higher Order Approximation,' Computer Methods in Applied Mechanics and Engineering, Vol. 191, No. 13/14, pp. 1395-1419 https://doi.org/10.1016/S0045-7825(01)00330-9
  109. Vanderplaats, G.N. and Thomas, H.L., 1993, 'An Improved Approximation for Stress Constraints in Plate Structures,' Structural Optimization, Vol. 6, No. 1, pp. 1-6 https://doi.org/10.1007/BF01743168
  110. Vanderplaats, G.N. and Salajegheh, E., 1989, 'New Approximation Method for Stress Constraints in Structural Synthesis,' AIAA Journal, Vol. 27, No. 3, pp. 352-358 https://doi.org/10.2514/3.10119
  111. Sepulveda, A.E. and Thomas, H.L., 1996, 'Improved Transient Response Approximation for General Damped Systems,' AIAA Journal, Vol. 34, No. 6, pp. 1261-1269 https://doi.org/10.2514/3.13222
  112. Iwan, W.D. and Jensen, H.A., 1993, 'On the Dyanmic Response of Continuous Systems Including Model Uncertainty,' Journal of Applied Mechanics - Transactions of the ASME, Vol. 60, No. 2, pp. 484-490 https://doi.org/10.1115/1.2900819
  113. Canfield, R.A., 1990, 'Hihg Quality Approximations of Eigenvalues in Structural Optimizations of Trusses,' AIAA Journal, Vol. 28, No. 6, pp. 1116-1122 https://doi.org/10.2514/3.25175
  114. Atkas, A. and Moses, E., 1998, 'Reduced Basis Eigenvalue Solutions for Damaged Structures,' Mechanics of Structures and Machines, Vol. 26, No. 1, pp. 63-79 https://doi.org/10.1080/08905459808945420
  115. Chen, S.H., Yang, X.W. and Lian, H.D., 2000, 'Comparison of Several Eigenvalue Reanalysis Methods for Modified Structures,' Structural and Multidisciplinary Optimization, Vol. 20, No. 4, pp. 253-259 https://doi.org/10.1007/s001580050155
  116. Kirsch, U., 2003, 'Approximate Vibration Reanalysis of Structures,' AIAA Journal, Vol. 41, No. 3, pp. 504-511 https://doi.org/10.2514/2.1973
  117. Kirsch, U., 2003, 'Design-Oriented Analysis of Structures-Unified Approach,' Journal of Engineering Mechanics, Vol. 129, No. 3, pp. 264-272 https://doi.org/10.1061/(ASCE)0733-9399(2003)129:3(264)
  118. Sepulveda, A.E. and Thomas, H.L., 1995, 'New Approximation for Steady-State Response of General Damped Systems,' AIAA Journal, Vol. 33, No. 6, pp. 1127-1133 https://doi.org/10.2514/3.12459
  119. Jensen, H.A. and Sepulveda, A.E., 1998, 'Design Sensitivity Metric for Structural Dynamic Response,' AIAA Journal, Vol. 36, No. 9, pp. 1686-693 https://doi.org/10.2514/2.572
  120. VR&D, 2004, 'GENESIS Design Manual', VR&D, CO.
  121. VR&D, 2004, 'VisualDOC 4.0 Theoretical Manual', VR&D, CO.
  122. Leiva, J.P., Watson, B.C., Kosaka, I. and Vanderplaats, G.N., Year. 'Dynamic Finite Element Analysis and Optimization in Genesis.' in 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Atlanta, Georgia
  123. Choi, W.S. and Park, G.J., 2002, 'Structural Optimization Using Equivalent Static Loads at All Time Intervals,' Computer Methods in Applied Mechanics and Engineering, Vol. 191, No. 19/20, pp. 2077-2094 https://doi.org/10.1016/S0045-7825(01)00373-5
  124. Park, GJ. and Kang, B.S., 2003, 'Validation of a Structural Optimization Algorithm Transforming Dynamic Loads into Equivalent Static Loads,' Journal of Optimization Theory and Applications, Vol. 118, No. 1, pp. 191-200 https://doi.org/10.1023/A:1024799727258
  125. Park, G.J., 2006, Analytical Methods for Design Practice, Springer-Verlag, Germany (to be published)
  126. Shabana, A.A., 1998, Dynamics of Multibody Systems, Cambridge University, Cambridge
  127. Lowen, G.G. and Chassapis, C, 1986, 'The Elastic Behavior of Linkage: An Update,' Mechanism and Machine Theory, Vol. 21, No. 1, pp. 33-42 https://doi.org/10.1016/0094-114X(86)90028-5
  128. Thomson, B.S. and Sung, C.K., 1986, 'A Survey of Finite Element Techniques for Mechanism Design,' Mechanism and Machine Theory, Vol. 21, No. 4, pp. 351-359 https://doi.org/10.1016/0094-114X(86)90057-1
  129. Haug, E.J., 1989, Computer-Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, MA
  130. Erdman, A.G., Sandor, G.N. and Oakberg, R.G., 1972, 'A General Method for Kineto-Elastodynamic Analysis and Synthesis of Mechanisms,' Journal of Engineering for Industry, Transactions of the ASME, Vol. 94, No. 4, pp. 1193-1205 https://doi.org/10.1115/1.3428335
  131. Imam, I. and Sandor, G.N., 1973, 'A General Method of Kineto-Elastodynamic Design of High Speed Mechanisms,' Mechanism and Machine Theory, Vol. 8, No. 4, pp. 497-516 https://doi.org/10.1016/0094-114X(73)90023-2
  132. Imam, I. and Sandor, G.N., 1975, 'High-Speed Mechanism Design - a General Analytical Approach,' Journal of Engineering for Industry, Transactions of the ASME, Vol. 97, No. 4, pp. 609-628 https://doi.org/10.1115/1.3438626
  133. Thornton, W.A., Willmert, K.D. and Khan, M.R, 1979, 'Mechanism Optimization Via Optimality Criterion Techniques,' Journal of Mechanical Design - Transactions of the ASME, Vol. 101, No. 3, pp. 392-397 https://doi.org/10.1115/1.3454071
  134. Cleghorn, W.L., Fenton, R.G. and Tabarrok, B., 1981, 'Optimum Design of High Speed Flexible Mechanisms,' Mechanisms and Machine Theory, Vol. 16, No. 4, pp. 399-406 https://doi.org/10.1016/0094-114X(81)90013-6
  135. Zhang, C. and Grandin, H.T., 1983, 'Optimum Design of Flexible Mechanisms,' Journal of Mechanisms, Transmissions, and Automation in Design, Transactions of the ASME, Vol. 105, No. 2, pp. 267-272 https://doi.org/10.1115/1.3258520
  136. Zhang, X., Shen, Y., Liu, H. and Cao, W., 1995, 'Optimal Design of Flexible Mechanisms with Frequency Constraints,' Mechanism and Machine Theory, Vol. 30, No.1, pp. 131-139 https://doi.org/10.1016/0094-114X(94)00017-F
  137. Yu, Y.Q. and Smith, M.R., 1996, 'The Effect of Cross-Sectional Parameters on the Dynamics of Elastic Mechanisms,' Mechanism and Machine Theory, Vol. 31 No. 7, pp. 947-958 https://doi.org/10.1016/0094-114X(95)00114-E
  138. Min, S., Kikuchi, N., Park, Y.C., Kim, S. and Chang, S., 1999, 'Optimal Topology Design of Structures under Dynamic Loads,' Structural Optimization, Vol. 17, No. 2/3, pp. 208-218 https://doi.org/10.1007/BF01195945
  139. Tcherniak, D., 2002, 'Topology Optimization of Resonating Structures Using Simp Method,' International Journal for Numerical Methods in Engineering, Vol. 54, No. 11, pp. 1605-1622 https://doi.org/10.1002/nme.484
  140. Dobson, B.J. and Rider, E., 1990, 'A Review of the Indirect Calculation of Excitation Forces from Measured Structural Response Data,' Proceedings of the Institution of Mechanical Engineers. Part C - Mechanical Engineering Science, Vol. 204, No. 2, pp. 69-75 https://doi.org/10.1243/PIME_PROC_1990_204_080_02
  141. D'cruz, J., Crisp, J.D.C. and Ryall, T.G., 1992, 'On the Identification of Harmonic Force on a Viscoelastic Plate from Response Data,' Journal of Applied Mechanics - Transactions of the ASME, Vol. 59, No. 4, pp. 722-729 https://doi.org/10.1115/1.2894034
  142. Moller, P.W., 1999, 'Load Identification through Structural Modification,' Journal of Applied Mechanics - Transactions of the ASME, Vol. 66, No. 1, pp. 236-241 https://doi.org/10.1115/1.2789152
  143. Wang, B.T., 2002, 'Prediction of Impact and Harmonic Forces Acting on Arbitrary Structures: Theoretical Formulation,' Mechanical Systems and Signal Processing, Vol. 16, No. 6, pp. 935-953 https://doi.org/10.1006/mssp.2002.1505
  144. Zhu, X.Q. and Law, S.S., 2003, 'Time Domain Identification of Moving Loads on Bridge Deck,' Journal Of Vibration and Acoustics -Transactions of the ASME, Vol. 125, No. 2, pp. 187-198 https://doi.org/10.1115/1.1547662
  145. Sehlstedt, N., 2003, 'A Well-Conditioned Technique for Solving the Inverse Problem of Boundary Traction Estimation for a Constrained Vibrating Structure,' Computational Mechanics, Vol. 30, No. 3, pp. 247-258 https://doi.org/10.1007/s00466-002-0383-2