• 제목/요약/키워드: Optimization of Process parameters

검색결과 925건 처리시간 0.03초

AA5182 알루미늄 판재의 Nd:YAG 레이저 용접에서 유전 알고리즘을 이용한 공정변수 최적화에 대한 연구 (A Study of Process Parameters Optimization Using Genetic Algorithm for Nd:YAG Laser Welding of AA5182 Aluminum Alloy Sheet)

  • 박영환;이세헌;박현성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1322-1327
    • /
    • 2007
  • Many automotive companies have tried to apply the aluminum alloy sheet to car body because reducing the car weight can improve the fuel efficiency of vehicle. In order to do that, sheet materials require of weldablity, formability, productivity and so on. Aluminum alloy was not easy to join these metals due to its material properties. Thus, the laser is good heat source for aluminum alloy welding because of its high heat intensity. However, the welding quality was not good by porosity, underfill, and magnesium loss in welded metal for AA5182 aluminum alloy. In this study, Nd:YAG laser welding of AA 5182 with filler wire AA 5356 was carried out to overcome this problem. The weldability of AA5182 laser welding with AA5356 filler wire was investigated in terms of tensile strength and Erichsen ratio. For full penetration, mechanical properties were improved by filler wire. In order to optimize the process parameters, model to estimate tensile strength by artificial neural network was developed and fitness function was defined in consideration of weldability and productivity. Genetic algorithm was used to search the optimal point of laser power, welding speed, and wire feed rate.

  • PDF

Taguchi's Robust Design Method for Optimization of Lysophosphatidic Acid Production in an Open Reactor System

  • Han, Jeong-Jun;Rhee, Joon-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권1호
    • /
    • pp.81-88
    • /
    • 1998
  • The determination of appropriate parameters and parameter conditions is very important for the optimization of production of target materials. Taguchi's method has been used widely as the basis for development trials and optimization during industrial process design. Reaction variables which influence product yield are easily determined and their effects are revealed by just a few reactions, negating the need for extensive experimental investigation. There are usually some factors that are responsible for variations in process characteristics, so called noise factors. Controlling noise factors is very costly and difficult or impossible. Taguchi's experimental design method was examined to determine the control factor's level that is less sensitive to the changes in environmental conditions and other noise factors without control of noise factors. In this study, optimization of lipase-catalyzed production of lysophosphatidic acid (LPA) which has various physiological functions was performed by Taguchi's method. We obtained LPA yields ($66.5\%$) with low variance (5.32) at 400 RPM, molar ratio of 40 : 3 (mol) (fatty acid: G-3-P), 48 h, and $50^{\circ}C$. Thus, bioactive LPA with a desired fatty acid moiety could be produced with high yields and low variance despite various environmental noise factors.

  • PDF

Optimal design of truss structures using a new optimization algorithm based on global sensitivity analysis

  • Kaveh, A.;Mahdavi, V.R.
    • Structural Engineering and Mechanics
    • /
    • 제60권6호
    • /
    • pp.1093-1117
    • /
    • 2016
  • Global sensitivity analysis (GSA) has been widely used to investigate the sensitivity of the model output with respect to its input parameters. In this paper a new single-solution search optimization algorithm is developed based on the GSA, and applied to the size optimization of truss structures. In this method the search space of the optimization is determined using the sensitivity indicator of variables. Unlike the common meta-heuristic algorithms, where all the variables are simultaneously changed in the optimization process, in this approach the sensitive variables of solution are iteratively changed more rapidly than the less sensitive ones in the search space. Comparisons of the present results with those of some previous population-based meta-heuristic algorithms demonstrate its capability, especially for decreasing the number of fitness functions evaluations, in solving the presented benchmark problems.

Design Optimization of Ball Grid Array Packaging by the Taguchi Method

  • Kim, Yeong-K.;Kim, Jae-chang;Choi, Joo-Ho
    • 마이크로전자및패키징학회지
    • /
    • 제17권4호
    • /
    • pp.67-72
    • /
    • 2010
  • In this paper, a design optimization of ball grid array packaging geometry is studied based on the Taguchi method, which allowed robust design by considering the variance of the input parameters during the optimization process. Molding compound and substrate were modeled as viscoelastic, and finite element analyses were performed to calculate the strain energy densities of the eutectic solder balls. Six quality factors of the dimensions of the packaging geometry were chosen as control factors. After performing noise experiments to determine the dominant factors, main experiments were conducted to find the optimum packaging geometry. Then the strain energy densities between the original and optimized geometries were compared. It was found that the effects of the packaging geometry on the solder ball reliability were significant, and more than 40% of the strain energy density was reduced by the geometry optimization.

Computational finite element model updating tool for modal testing of structures

  • Sahin, Abdurrahman;Bayraktar, Alemdar
    • Structural Engineering and Mechanics
    • /
    • 제51권2호
    • /
    • pp.229-248
    • /
    • 2014
  • In this paper, the development of a new optimization software for finite element model updating of engineering structures titled as FemUP is described. The program is used for computational FEM model updating of structures depending on modal testing results. This paper deals with the FE model updating procedure carried out in FemUP. The theoretical exposition on FE model updating and optimization techniques is presented. The related issues including the objective function, constraint function, different residuals and possible parameters for FE model updating are investigated. The issues of updating process adopted in FemUP are discussed. The ideas of optimization to be used in FE model updating application are explained. The algorithm of Sequential Quadratic Programming (SQP) is explored which will be used to solve the optimization problem. The possibilities of the program are demonstrated with a three dimensional steel frame model. As a result of this study, it can be said that SQP algorithm is very effective in model updating procedure.

FDM 3D 프린터 최적 공정 변수 선정을 위한 공정 윈도우 평가법 (Estimation of Process Window for the Determination of the Optimal Process Parameters in FDM Process)

  • 안일혁
    • 한국융합학회논문지
    • /
    • 제9권8호
    • /
    • pp.171-177
    • /
    • 2018
  • 3D 프린팅 기술에 있어서, 각각의 기술들은 고품질의 출력물을 얻기 위해서는 최적화해야 할 다양한 인자들을 가지고 있다. FDM (fused deposition modeling) 방식의 3D 프린터 또한 최적화해야 할 다수의 인자들이 있다. 그 중에서도 노즐 온도와 노즐 이송 속도는 가장 기본이 되는 인자라고 할 수 있다. 안정적인 출력이 가능한 두 인자의 조합을 찾는 것은 FDM 장비를 이용한 출력에 있어서 가장 먼저 선행되어야 할 일이다. 본 연구에서는 다양한 두 인자 조합에 따라 단일 라인 출력을 수행하였고, 얻어진 출력 결과물을 평가를 통하여 안정적인 출력이 가능한 범위를 선정하는 새로운 방법을 제시하였다. 제시한 방법을 통하여 평가한 안정적 조건 범위들을 동일 범위 조건 아래에서 다층 단일 라인 출력을 통하여 검증하였다. 그 결과, 단일 라인과 다층 단일 라인 출력이 동일한 안정적 범위를 보이고 있음을 확인 할 수 있었다. 이는 본 논문에서 제안한 단일 라인 평가법을 다층 출력의 안정성을 그대로 반영할 수 있음을 보여 준다. 이상의 결과들로 볼 때, 제안한 방법은 간단한 실험과 측정 방법을 이용하여 손쉽게 수행 될 수 있다는 점과 공정 변수들의 최적화를 위한 기본 데이터를 제공한다는 점에서도 그 의미를 찾을 수 있었다.

Genetic Algorithm을 이용한 상수관망의 최적설계: (II) -민감도 분석을 중심으로- (Optimal Design of Water Distribution Networks using the Genetic Algorithms:(II) -Sensitivity Analysis-)

  • 신현곤;박희경
    • 상하수도학회지
    • /
    • 제12권2호
    • /
    • pp.50-58
    • /
    • 1998
  • Genetic Algorithm (GA) consists of selection, reproduction, crossover and mutation processes and many parameters including population size, generation number, the probability of crossover (Pc) and the probability of mutation (Pm). Determining values of the parameters is found critical in the whole optimization process and a sensitivity analysis with them seems mandatory. This paper tries to demonstrate such importance of sensitivity analysis of GA using an example water supply tunnel network of the New York City. For optimization of the network with GA, Pc and Pm vary from 0.5 to 0.9 by an increment of 0.1 and from 0.01 to 0.05 by an increment of 0.01, respectively, while fixing both the population size and the generation number to 100. This sensitivity analysis results in an optimum design of 22.3879 million dollars at the values of 0.8 and 0.01 for Pc and Pm, respectively. In addition, the probability of recombination (Pr) is introduced to check its applicability in the GA optimization of water distribution network. When Pr is 0.05 with the same values of Pc and Pm as above, the optimum design costs 20.9077 million dollars. This is lower than the cost of 22.3879 million dollars for the case of not using Pr by 6.6%. These results indicate that conducting a sensitivity analysis with parameter values and using Pr are useful in the optimization of WDN.

  • PDF

반응표면분석법을 이용한 알루미늄 판재 성형공정의 스프링백 저감에 관한 연구 (A Study of the Springback Reduction in Aluminium Sheet Forming Using Response Surface Method)

  • 양재봉;전병희;오수익
    • 소성∙가공
    • /
    • 제9권5호
    • /
    • pp.526-532
    • /
    • 2000
  • Springback simulation is receiving increasing attention throughout the automotive industry and the academic world. The knowledge of the real springback of stamped parts can help the stamping technicians to modify the process parameters or die geometry in order to reduce the shape defect. This paper presents the results of springback simulation after aluminium square cup deep drawing and trimming simulation, and results of springback optimization using response surface method.

  • PDF

Seismic behavior enhancement of frame structure considering parameter sensitivity of self-centering braces

  • Xu, Longhe;Xie, Xingsi;Yan, Xintong;Li, Zhongxian
    • Structural Engineering and Mechanics
    • /
    • 제71권1호
    • /
    • pp.45-56
    • /
    • 2019
  • A modified mechanical model of pre-pressed spring self-centering energy dissipation (PS-SCED) brace is proposed, and the hysteresis band is distinguished by the indication of relevant state variables. The MDOF frame system equipped with the braces is formulated in an incremental form of linear acceleration method. A multi-objective genetic algorithm (GA) based brace parameter optimization method is developed to obtain an optimal solution from the primary design scheme. Parameter sensitivities derived by the direct differentiation method are used to modify the change rate of parameters in the GA operator. A case study is conducted on a steel braced frame to illustrate the effect of brace parameters on node displacements, and validate the feasibility of the modified mechanical model. The optimization results and computational process information are compared among three cases of different strategies of parameter change as well. The accuracy is also verified by the calculation results of finite element model. This work can help the applications of PS-SCED brace optimization related to parameter sensitivity, and fulfill the systematic design procedure of PS-SCED brace-structure system with completed and prospective consequences.

Effect of structure configurations and wind characteristics on the design of solar concentrator support structure under dynamic wind action

  • Kaabia, Bassem;Langlois, Sebastien;Maheux, Sebastien
    • Wind and Structures
    • /
    • 제27권1호
    • /
    • pp.41-57
    • /
    • 2018
  • Concentrated Solar Photovoltaic (CPV) is a promising alternative to conventional solar structures. These solar tracking structures need to be optimized to be competitive against other types of energy production. In particular, the selection of the structural parameters needs to be optimized with regards to the dynamic wind response. This study aims to evaluate the effect of the main structural parameters, as selected in the preliminary design phase, on the wind response and then on the weight of the steel support structure. A parametric study has been performed where parameters influencing dynamic wind response are varied. The study is performed using a semi-deterministic time-domain wind analysis method. Unsteady aerodynamic model is applied for the shape of the CPV structure collector at different configurations in conjunction with a consistent mass-spring-damper model with the corresponding degrees of freedom to describe the dynamic response of the system. It is shown that, unlike the static response analysis, the variation of the peak wind response with many structural parameters is highly nonlinear because of the dynamic wind action. A steel structural optimization process reveals that close attention to structural and site wind parameters could lead to optimal design of CPV steel support structure.