• Title/Summary/Keyword: Optimization constraints

Search Result 1,552, Processing Time 0.024 seconds

Survey of research on the optimal design of sea harbours

  • Diab, Hassan;Younes, Rafic;Lafon, Pascal
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.460-472
    • /
    • 2017
  • The design of harbours, as with any other system design, must be an optimization process. In this study, a global examination of the different constraints in coastal engineering was performed and an optimization problem was defined. The problem has multiple objectives, and the criteria to be minimized are the structure cost and wave height disturbance inside a harbour. As concluded in this survey, the constraints are predefined parameters, mandatory constraints or optional constraints. All of these constraints are categorized into four categories: environmental, fluid mechanical, structural and manoeuvring.

Mass optimization of four bar linkage using genetic algorithms with dual bending and buckling constraints

  • Hassan, M.R.A.;Azid, I.A.;Ramasamy, M.;Kadesan, J.;Seetharamu, K.N.;Kwan, A.S.K.;Arunasalam, P.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.1
    • /
    • pp.83-98
    • /
    • 2010
  • In this paper, the mass optimization of four bar linkages is carried out using genetic algorithms (GA) with single and dual constraints. The single constraint of bending stress and the dual constraints of bending and buckling stresses are imposed. From the movement response of the bar linkage mechanism, the analysis of the mechanism is developed using the combination of kinematics, kinetics, and finite element analysis (FEA). A penalty-based transformation technique is used to convert the constrained problem into an unconstrained one. Lastly, a detailed comparison on the effect of single constraint and of dual constraints is presented.

Multi-step design optimization of a high speed machine tool structure using a genetic algorithm with dynamic penalty (동적 벌점함수 유전 알고리즘과 다단계 설계방법을 이용한 공작기계 구조물의 설계 최적화)

  • 최영휴;배병태;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.108-113
    • /
    • 2002
  • This paper presents a multi-step structural design optimization method fur machine tool structures using a genetic algorithm with dynamic penalty. The first step is a sectional topology optimization, which is to determine the best sectional construction that minimize the structural weight and the compliance responses subjected to some constraints. The second step is a static design optimization, in which the weight and the static compliance response are minimized under some dimensional and safety constraints. The third step is a dynamic design optimization, where the weight static compliance, and dynamic compliance of the structure are minimized under the same constraints. The proposed design method was examined on the 10-bar truss problem of topology and sizing optimization. And the results showed that our solution is better than or just about the same as the best one of the previous researches. Furthermore, we applied this method to the topology and sizing optimization of a crossbeam slider for a high-speed machining center. The topology optimization result gives the best desirable cross-section shape whose weight was reduced by 38.8% than the original configuration. The subsequent static and dynamic design optimization reduced the weight, static and dynamic compliances by 5.7 %, 2.1% and 19.1% respectively from the topology-optimized model. The examples demonstrated the feasibility of the suggested design optimization method.

  • PDF

Reliability-Based Topology Optimization for Structures with Stiffness Constraints (강성구속 조건을 갖는 구조물의 신뢰성기반 위상최적설계)

  • Kim, Sang-Rak;Park, Jae-Yong;Lee, Won-Goo;Yu, Jin-Shik;Han, Seog-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.77-82
    • /
    • 2008
  • This paper presents a Reliability-Based Topology Optimization(RBTO) using the Evolutionary Structural Optimization(ESO). An actual design involves some uncertain conditions such as material property, operational load and dimensional variation. The Deterministic Topology Optimization(DTO) is obtained without considering the uncertainties related to the uncertainty parameters. However, the RBTO can consider the uncertainty variables because it has the probabilistic constraints. In order to determine whether the probabilistic constraints are satisfied or not, simulation techniques and approximation methods are developed. In this paper, the reliability index approach(RIA) is adopted to evaluate the probabilistic constraints. In order to apply the ESO method to the RBTO, sensitivity number is defined as the change in the reliability index due to the removal of the ith element. Numerical examples are presented to compare the DTO with the RBTO.

THE GLOBAL OPTIMAL SOLUTION TO THE THREE-DIMENSIONAL LAYOUT OPTIMIZATION MODEL WITH BEHAVIORAL CONSTRAINTS

  • Jun, Tie;Feng, Enmin
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.313-321
    • /
    • 2004
  • In this paper we study the problem of three-dimensional layout optimization on the simplified rotating vessel of satellite. The layout optimization model with behavioral constraints is established and some effective and convenient conditions of performance optimization are presented. Moreover, we prove that the performance objective function is locally Lipschitz continuous and the results on the relations between the local optimal solution and the global optimal solution are derived.

Structural dynamic optimization with probability constraints of frequency and mode

  • Chen, Jian-Jun;Che, Jian-Wen;Sun, Huai-An;Ma, Hong-Bo;Cui, Ming-Tao
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.479-490
    • /
    • 2002
  • The structural dynamic optimization problem based on probability is studied. Considering the randomness of structural physical parameters and the given constraint values, we develop a dynamic optimization mathematical model of engineering structures with the probability constraints of frequency, forbidden frequency domain and the vibration mode. The sensitivity of structural dynamic characteristics based on probability is derived. Two examples illustrate that the optimization model and the method applied are rational and efficient.

Stress-based topology optimization under buckling constraint using functionally graded materials

  • Minh-Ngoc Nguyen;Dongkyu Lee;Soomi Shin
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.203-223
    • /
    • 2024
  • This study shows functionally graded material structural topology optimization under buckling constraints. The SIMP (Solid Isotropic Material with Penalization) material model is used and a method of moving asymptotes is also employed to update topology design variables. In this study, the quadrilateral element is applied to compute buckling load factors. Instead of artificial density properties, functionally graded materials are newly assigned to distribute optimal topology materials depending on the buckling load factors in a given design domain. Buckling load factor formulations are derived and confirmed by the resistance of functionally graded material properties. However, buckling constraints for functionally graded material topology optimization have not been dealt with in single material. Therefore, this study aims to find the minimum compliance topology optimization and the buckling load factor in designing the structures under buckling constraints and generate the functionally graded material distribution with asymmetric stiffness properties that minimize the compliance. Numerical examples verify the superiority and reliability of the present method.

Improved Gauss Pseudospectral Method for UAV Trajectory Planning with Terminal Position Constraints

  • Qingquan Hu;Ping Liu;Jinfeng Yang
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.563-575
    • /
    • 2023
  • Trajectory planning is a key technology for unmanned aerial vehicles (UAVs) to achieve complex flight missions. In this paper, a terminal constraints conversion-based Gauss pseudospectral trajectory planning optimization method is proposed. Firstly, the UAV trajectory planning mathematical model is established with considering the boundary conditions and dynamic constraints of UAV. Then, a terminal constraint handling strategy is presented to tackle terminal constraints by introducing new penalty parameters so as to improve the performance index. Combined with Gauss-Legendre collocation discretization, the improved Gauss pseudospectral method is given in detail. Finally, simulation tests are carried out on a four-quadrotor UAV model with different terminal constraints to verify the performance of the proposed method. Test studies indicate that the proposed method performances well in handling complex terminal constraints and the improvements are efficient to obtain better performance indexes when compared with the traditional Gauss pseudospectral method.

Optimal design of pitched roof frames with tapered members using ECBO algorithm

  • Kaveh, Ali;Mahdavi, Vahid Reza;Kamalinejad, Mohammad
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.643-652
    • /
    • 2017
  • Pitched roof frames are widely used in construction of the industrial buildings, gyms, schools and colleges, fire stations, storages, hangars and many other low rise structures. The weight and shape of the gable frames with tapered members, as a familiar group of the pitched roof frames, are highly dependent on the properties of the member cross-sectional. In this work Enhanced Colliding Bodies Optimization (ECBO) is utilized for optimal design of three gable frames with tapered members. In order to optimize the frames, the design is performed using the AISC specifications for stress, displacement and stability constraints. The design constraints and weight of the gable frames are computed from the cross-section of members. These optimum weights are obtained using aforementioned optimization algorithms considering the cross-sections of the members and design constraints as optimization variables and constraints, respectively. A comparative study of the PSO and CBO with ECBO is also performed to illustrate the importance of the enhancement of the utilized optimization algorithm.

AN IMPROVED COMBINATORIAL OPTIMIZATION ALGORITHM FOR THE THREE-DIMENSIONAL LAYOUT PROBLEM WITH BEHAVIORAL CONSTRAINTS

  • Jun, Tie;Wang, Jinzhi;Feng, Enmin
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.283-290
    • /
    • 2008
  • This paper is motivated by the problem of fitting a group of cuboids into a simplified rotating vessel of the artificial satellite. Here we introduce a combinatorial optimization model which reduces the three-dimensional layout problem with behavioral constraints to a finite enumeration scheme. Moreover, a global combinatorial optimization algorithm is described in detail, which is an improved graph-theoretic heuristic.

  • PDF