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AN IMPROVED COMBINATORIAL OPTIMIZATION
ALGORITHM FOR THE THREE-DIMENSIONAL LAYOUT
PROBLEM WITH BEHAVIORAL CONSTRAINTS

TIE JUN, JINZHI WANG AND ENMIN FENG

ABsTrACT. This paper is motivated by the problem of fitting a group of
cuboids into a simplified rotating vessel of the artificial satellite. Here
we introduce a combinatorial optimization model which reduces the three-
dimensional layout problem with behavioral constraints to a finite enumer-
ation scheme. Moreover, a global combinatorial optimization algorithm is
described in detail, which is an improved graph-theoretic heuristic.
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1. Introduction

In recent years, the three-dimensional layout problems evoke much attention
and a great of work devoted to which have been done because of their great
significance both in theory and economy [1,2,3,4,5,14]. But most of these papers
referred to above have developed heuristic solution procedures, and none of them
gave an analytical model for the three-dimensional container loading problem.

Against the background of the rotating vessel of the artificial satellite, En-
min Feng etc. [6,7] reported different direct analytical mathematical models
for two-and three-dimensional layout optimization problems. They successfully
transformed the problems into the convex programming with D.C. constraints
(i.e. the remainder of two convex functions) and developed some heuristics that
attempt to optimize the space utilization.

In fact, the three-dimensional layout problems have wide-ranging applications
in many high technological fields, such as the layout design problems of the
vessel of satellite, the vessel of spacecraft, rotating building and high-speed train
ete. It is well known that the three-dimensional layout problems are NP-hard,
because they include the one-dimensional layout problems as their special cases,
This means that there is no effective solution theory and method up to now.
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Moreover, as many authors themselves observed, their solution procedures are
not efficient for large scale container loading problems, which require a large
amount of computation in determining non-overlapping objects. And it is very
difficult to construct descent direction.

This paper studies the three-dimensional layout optimization problem of the
simplified rotating vessel of satellite to find an optimal strategy for allocating
a finite number of apparatus inside the rotating vessel of satellite. Clearly the
industrial layout problems are complex and have many constraints. For this
problem one is required to consider the following three constraints: (a) capac-
ity constraints: objects do not exceed the await layout space; (b) non-overlap
constraints: objects are not overlapped by each other; (c) static non-equilibrium
constraints: the centroid of all await layout objects should be as close to the
axis of revolution of the vessel as possible.

Furthermore, we introduce graph theory and group theory to construct a com-
binatorial global optimization algorithm which can reduce the three-dimensional
layout problem with constraints to a finite enumeration scheme and can over-
come the difficulty rooted in the on-off nature of three-dimensional layout prob-
lems, proposed by Enmin Feng , X.L.Wang and H.F.Teng (8] on two-dimensional
layout problem.

2. A Layout optimization mathematical model.

Suppose that there are n await layout objects (e.g. apparatus) which are
generally simplified as a cuboids group, while the given objects have different
shapes, volume, weight and qualities. At the same time, we simplify the rotating
vessel of the artificial satellite as follows: it is smoothly connected by the up and
down parts, where its upper part is a spherical crowns and its lower part is
a cylinder. The await layout space is formed of the up and down parts of the
vessel with rigidity housing of even thickness. Now we set up a three-dimensional
Descartes coordinate system. Assume that the axis of revolution of the vessel
coincides with the centre axis of the cylinder which is in the lower part of the
vessel. We take the axis that the vessel rotates around as the upward z-axis
. And the circular base board B of the cylinder is taken as the xy-coordinate
plane, which is used to fix objects (e.g. apparatus). Therefore we set up a three-
dimensional Descartes coordinate system and make its origin coincide with the
center of the base board of the cylinder. Obviously, the z-axis is vertical to the
base board B and they satisfy the right-handed law.

Thus the layout space can be described as the set

X = {(:1:,y,z)|acQ+y2 <a?,0<z< /A2 — g2 ——yz}(A >a>0)

and the spherical crowns can be described as the set

§={@n? +1? <= VB2 -2 }(A>a>0),

where the circular base board of the cylinder B = {(r,9,0)[r* + v* < a*}.
Clearly the layout space yx is a convex set, its interior int ¥ is also a convex set.
Let n different cuboids F;,7 = 1,2,--- ,n are to be allocate on the base board
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B and their masses m; € R_3H where m; is the mass of the cuboid F;. Denote
the center of form of the it cuboid F} by ¢; = (zi,1:, 2;) € R, and suppose that
the centroid of F; coincides with ¢;. Let p; = (4;,w;, h;) € R?,_, £ > w; >0,
where 24;, 2w;, h; signify the length, the width and the height of F} , respec-
tively. Moreover, denote F;rj be the projective rectangle of F; on xoy-coordinate
plane. The unite vectors #; = (cosf;,sin8;,0) and ¢} = (—siné;, cos6;,0) par-
alle]l respectively the long edge and the short edge of F;;,j, where the angle

0, = ti:m € (—Z,Z] is included between the long edge of F? . and x-axis.
2132 Ty

Then such a cuboid F; can be uniquely determined by vectors c;, p;, t; € R as

F; = F(ci,piti)

c; + uit; + ’u,gt,jl‘ + ugzes

ur € [~4;, 8], ug € [—w;,wi,
us € [O,hi], ez = (0,0, 1)

To reduce the number of optimization variables, now let W = (-3, §) and
let T = {t = (z,y,0)|z = cosf,y =sinh,0 € W }. Then there exists a bijection
g:W-T
0+ t = (cosf,sinf,0)
For a special three-dimensional layout problem, it is clear that n, a, 4, p;, m;
4 =1,2,--+ ,nare constants. Hence the cuboids F; can also be determined by
0; € (%, %), (zi,4:,0) € B, then we have

Definition 1. Let Yi = (sc,-,y,-,ai) c RBand Y = (yl,yz,--' ,yn) € RSn’
where(z;,y:,0) € B), §; € (— g, g], i€I,. Then Y = (y1,¥2," "+ ,¥n) € R
is called a layout scheme.

Property 1. Let D be the set of all of the layout schemes Y = (y1,y2,"** ,¥Yn) €
R®. Then D is a conver set in R .

Proof. Let W = {(0,0,6;)|6; € W}, then following from Definitionl we have
that y; = (zi,¥:,68:) € B @ W . It is clear that B and W are convex sets. By
Theorem 3.5 in [9] the direct sum B @ W is a convex set in R® . Moreover, the
set of all of the layout schemes D is a convex set. 0

Definition 2. For a layout scheme Y € D, if no overlap exists among all the
cuboids F; determined by Y € D, ie., intF;()intF; =, i # j,4,j € I, where
int F; and Fj are the internals of F; and int Fj, respectively, then the layout
scheme Y is called a non-overlap layout scheme.

Let D, be the set of all the non-overlap layout schemes. In this paper, the
three-dimensional layout problem consists in finding a placing in D,,, denoted by
P, which have the minimal static non-equilirium quantity of the layout problem
P about artificial satellite module so that the centroid of all await layout objects
should be as close to the axis of revolution of the vessel as possible, i.e.,

P :=min H(Y)
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such that Y € D, and

n
UFcx
i=1

where the static non-equilirium quantity

n
E m;c;

=1

H(Y)= for Y € D,,.

3. The graphs of the non-overlap layout schemes and
their combinatorial properties

Definition 3. Let F; and F} be the cuboids determined by a non-overlap layout
scheme Y € D, . If cuboids F; and Fj satisfy one of the following conditions:
(¢) There is at least one congruent point on the lateral faces of F; and Fj;
(43) under the condition of non-overlap, translate F; or F; along the segment
between the projections of ¢; and ¢; on xoy-coordinate plane, during the trans-
lation some rotations are permitted such that (i) can be satisfied.
Then F; and F; are said to be adjacent cuboids in the non-overlap layout
scheme Y € D,,, denoted by (F;, Fj).

Assume that there are r cuboids F;),F,, -+ ,F; , 1 <4 <i2 < -+- <
ir < n. Then we have that the set S = {i1,%, -+ ,ir} C I, = {1,2,--- ,n}.
Now we arrange the 2-combinations of S in the order of dictionary. For two
2-combinations of S a1,as and by, by, where a3 < as and by < by , if a; < by
or a; = by, ag < by, then we say that the 2-combination a;,az is prior to the
2-combination b1, b. From now on, we consider the adjacent relations between
cuboids F; and Fj in the order of dictionary as above.

For any non-overlap layout scheme Y € D,, , let V = {F,F,,--- | F,} be
the set of vertexes, which is the set of cuboids determined by Y € D,, in layout
problem P. Let E(Y) = {(F;, F}) : Fi, Fj € V, F; and F; are adjacent cuboids}
be the edge set of Y. Then we have

Definition 4. For any non-overlap layout scheme Y € D,, G(Y) = (V, E(Y))
is called a non-overlap layout graph of Y. Denote the set of all the non-overlap
layout graphs of problem P by G, = {G(Y) :Y € D,}.

Property 2. Every non-overlap layout graph G(Y) of Y € D,, is a connected,
simple graph, and it is correspondent with a non-overlap layout scheme.

Proof. Since the non-overlap layout graph G(Y') does not exclude loops (lines
joining a point to itself) and multiple lines (in parallel), then G(Y) is a simple
graph. The connectivity of G(Y") follows from Definition 3 and Definition 4.
It is clearly that, in any G(Y') = (V, E(Y)) € G,, we have that 2|E(Y)| =
Y. d(F;) , where |[E(Y)| is the number of edges of the graph G(Y) and d(F)
F;eV

is the number of edges joining with the vertex F; . O

Property 3. Every permutation o of the set of vertexes V = {Fy, Fa,--- , F,.}
can constitute a directed graph such that there is a directed arc from point F;
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to o(F;) . Since o is a bijection, then there is just one incident arc and one
out-arc.

Theorem 1. The number |G| of all the non-overlap layout graphs, i.e., the
number of n connected simple graphs of problem P satisfies

nz(’z‘):gk,GM.Q(”Ek).(n),

k

Proof. By Property 2, the result follows from Theorem 1 and 2 in [10}.

For example, when n = 1,2,3,:+-,7, by Theorem 1 we can calculate the
number G, is 1,1, 4, 38, 728, 26704, 1866256 respectively.

For layout problem P, let S, be a symmetric group with object set V =
{F,F,, -, F,}. For any ¢ € S,, , we define the induced mapping:

d:G, -G,

G(Y)— a(G(Y))
such that 3(G(Y)) = (V,0(E(Y))), where

a(E(Y)) = {(o(F),0(F;)) : (Fi, Fy) € E(Y)}.

In fact, the induced mapping @ is the action of ¢ on non-overlap layout graph
G(Y') which preserves adjacency in G(Y). O

Theorem 2. Denote S, = {7 : Vo € Sp}. Then the induced a group S, s group
isomorphic with Sy, i.e. S, = S,. Moreover, S, is a permutation group whose
objects are all the non-overlap layout graph G(Y) € G, and Sy, is a subgroup of
the symmetric group S\g,,).

Proof. Let f: S, — Sn and ¢ — &, then f is a bijection. For Vo, 7 € S, we
have that f(o7) = 6 = 67 = f(a)f(r) , 50 Sp = S, . Since Vo € S, is a
permutation of Gy, , it is clear that Sy, is a permutation group whose objects
are all the non-overlap layout graph G(Y) € G, and S, is a subgroup of the
symmetric group Sig,|.

Following [8], let the orbit of the induced group S, acting on G(Y) € Gy, be
Ok , ie., Op = {G(G(Y)): 7 € Sp} C Gp . It is evident that the orbit O of Gy,
is a partition of G, and includes only the isomorphic connected graph in G,,.
Suppose that the number of orbits in the set of graphs G, determined by the

—~ Cn
induced group Sy, is ¢p, thenGp, = |J Ok. O
k=1

Theorem 3. Let the orbit of the induced group S, acting on G(Y) € G, be O.
Then the number |Ok| of the non-overlap layout graphs in the orbit of Oy the

_ !

induced group S, acting on G(Y) € G, satisfies |Ok| = T}Z}T , where Hy is the
_ k
stationary kernel, i.e., Hy = {7 : 5 € S,,5(G(Y)) = G(Y)}.
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Proof. By Theorem 2, we have that S, = S,,, and thus |S,| = |Sn| = n! . Then
the result follows from Theorem A in §6.6 of [11]. O

Theorem 4. Let O(x) be the generating function for the orbits Ok in the set of
graphs G, determined by the induced group S, so that O(z Z en2™. Then
the number ¢, of the orbits Oy in the non-overiap layout gmphs G’(Y) € Gy

satisfies pap, = Y nca, where a, satisfies the formula Z apzP = Z c(z™)/n.
d/p p=1 n=1

Proof. Firstly, we extend the definitions of the non-overlap layout graph and its

orbit. For the set V = {F}, Fy,--- ,Fn}, there are g’ distinct unordered

pairs of these points. Denote the set of all the labeled graphs with point set
V by X. It is well known that each pair of points are either adjacent or not
adjacent. For layout problem P, let S, be a symmetric group with object set
V = {F,F,,- - ,F,}, similarly as above we can define the induced group Sn
acting on X.

Let g(z) be the generating function for the orbits of the induced group S,

acting on X so that g(z Z gnz" , by Theoremd4.2 in [10] we have that

1+ g(z) =exp Z e(z"
n=1

(2] 0
Since Y apzP = Y. c(z™)/n = log(1+g(z)), then the result follows by equating

p=1 n=1
coeflicients. 0
For example, when n = 1,2,3,---,7, By Theorem 3 we can calculate the

number of ¢, the orbits Oy, in the non-overlap layout graphs G(Y') € G, which
is 1,1,2,6,21,112, 853 respectively.

4. An improved combinatorial optimization algorithm

By virtue of the properties and theorems in section2 and section3, following
[8,12,13] we get the main steps of the combinatorial optimization algorithm
improved as follows:

Step 1. Input the parameter of the population of the three-dimensional layout
problem P : A,a,n and the physical parameter of the await layout cuboids
P, = (éi,wi,hi) S Ri,mi S R:}}_,i el,.

Step 2. By Theorems 1, 3, and 4, compute the number |G| of all the non-
overlap layout graphs of problem P, the number |O| of the non-overlap layout
graphs in the orbit |O| of the induced group S, acting on G(Y) € G, and
the number ¢, of the orbits Ok in the non-overlap layout graphs G(Y) € G,
respectively. Set k = 1.
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Step3. Generate a element G; € O and its corresponding non-overlap layout

scheme Yy; € D, such that Ok = {3(G;) : Gk; = G(Yki), & € Sp} C Gp, where
i=1,2,---,]|Ok|, then set i = 1.

ie.

Step 4. If the cuboids F; determined by Yj; satisfies the capacity constraints,
n
U F; € x, then go to Step?.

i=1
Step 5. Set i =i+ 1. If i < |Ok|, then go to Step .
Step 6. Set k =k + 1. If k < ¢, , then go to Step 3, otherwise go to Step 8.
Step 7. Let I(Yii) = {Y : E(Y) = E(Yki),G(Yri) € Or}. Then solve the

subproblem Py; of the layout problem P on I(Yj;), ie.,

Py: min H(Y)
n
s.t. U E,Cx
i=1
Y € I(Yii).

Step 8. Solve problem P to obtain the global optimal solution Y* and the

optimal value H(Y™).

10.

11.

12.

13.
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