• Title/Summary/Keyword: Optimal yield

Search Result 1,477, Processing Time 0.051 seconds

Submerged Monoxenic Culture Medium Development for Heterorhabditis bacteriophora and its Symbiotic Bacterium Photorhabdus luminescens: Protein Sources

  • Cho, Chun-Hwi;Whang, Kyung-Sook;Gaugler, Randy;Yoo, Sun-Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.8
    • /
    • pp.869-873
    • /
    • 2011
  • Most medium formulations for improving culture of entomopathogenic nematodes (EPN) based on protein sources have used enriched media like animal feed such as dried egg yolk, lactalbumin, and liver extract, among other ingredients. Most results, however, showed unstable yields and longer production time. Many of the results do not show the detailed parameters of fermentation. Soy flour, cotton seed flour, corn gluten meal, casein powder, soytone, peptone, casein hydrolysates, and lactalbumin hydrolysate as protein sources were tested to determine the source to support optimal symbiotic bacteria and nematode growth. The protein hydrolysates selected did not improve bacterial cell mass compared with the yeast extract control, but soy flour was the best, showing 75.1% recovery and producing more bacterial cell number ($1.4{\times}10^9$/ml) than all other sources. The highest yield ($1.85{\times}10^5$ IJs/ml), yield coefficient ($1.67{\times}10^6$ IJs/g medium), and productivity ($1.32{\times}10^7$ IJs/l/day) were also achieved at enriched medium with soybean protein.

Integrated Hydrolyzation and Fermentation of Sugar Beet Pulp to Bioethanol

  • Rezic, Tonic;Oros, Damir;Markovic, Iva;Kracher, Daniel;Ludwig, Roland;Santek, Bozidar
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1244-1252
    • /
    • 2013
  • Sugar beet pulp is an abundant industrial waste material that holds a great potential for bioethanol production owing to its high content of cellulose, hemicelluloses, and pectin. Its structural and chemical robustness limits the yield of fermentable sugars obtained by hydrolyzation and represents the main bottleneck for bioethanol production. Physical (ultrasound and thermal) pretreatment methods were tested and combined with enzymatic hydrolysis by cellulase and pectinase to evaluate the most efficient strategy. The optimized hydrolysis process was combined with a fermentation step using a Saccharomyces cerevisiae strain for ethanol production in a single-tank bioreactor. Optimal sugar beet pulp conversion was achieved at a concentration of 60 g/l (39% of dry weight) and a bioreactor stirrer speed of 960 rpm. The maximum ethanol yield was 0.1 g ethanol/g of dry weight (0.25 g ethanol/g total sugar content), the efficiency of ethanol production was 49%, and the productivity of the bioprocess was 0.29 $g/l{\cdot}h$, respectively.

A Novel Method for Production of Concentrated Purity Maltose Using Swollen Extruded Starch (Extrusion시킨 팽윤 전분을 기질로 한 새로운 Maltose 생산법)

  • Lee, Yong-Hyun;Kim, Dong-Sun;Shin, Hyun-Dong;Park, Jin-Seo
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.1
    • /
    • pp.106-113
    • /
    • 1994
  • A novel method for production of concentrated purity maltose using swollen extruded corn starch was investigated. Degree of gelatinization of extruded starch suitable for maltose formation was found to be around 70%. The optimal amiunt of enzyme was 400 unit fungal $\alpha $-amylase per g of starch, and the reaction time was 12 hours. At extruded starch concentration of 300 g/l(w/v), maltose concentration and content were reached up to 220 g/l(w/v) and 77%(w/w), respectively. The maltose forming reaction was also successfully proceeded at high starch concentration of 700 g/l(w/v), however, the conversion yield and content were decreased. By the addition of extruded starch by fed-batch wise, the maltose concentration, purity, and conversion yield could be improved up to 465 g/l(w/v), 70%(w/w), and 0.63, respectively. The investigated maltose production process seems to have many potential advantages over the conventional process utilizing liquefied starch, and the feasibility for industrial application needs to be evaluated.

  • PDF

SCP Production from Mandarin Orange Peel Press Liquor (감귤과피 압착액을 기질로 한 SCP 생산)

  • 강신권;성낙계
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.556-562
    • /
    • 1989
  • The bioconversion of mandarin orange peel press liquor to single cell protein (SCP) by two yeast strains, F-60, and C-7, which were isolated from mandarin orange peel was carried out and compared with that of using Candida utilis IFO 0598. Experiments were directed toward the high yield of biomass and high protein in cultures of the strains mentioned above. Candida utilis IFO 0598, F-60 and C-7 strains were cultivated at 3$0^{\circ}C$, pH 5.2 for 3 days in shaking flasks. The effects of some nutrients on cell growth were studied. Cell mass and protein content per cell mass were increased by addition of urea 1%, KH$_2$PO$_4$ 0.1% and MgSO$_4$ㆍ7$H_2O$ 0.05%, When the F-60 strain cultured under the optimal conditions, cell mass, growth yield and protein content were 41.2g/l, 53.9%, 59.7%, respectively. Cell mass was also increased up to 15% by modifying the fermentation condition on the bench type 20l jar fermentor. Crude fat content (10.3%) of dried C-7 cell was higher than those of C. utilis and F-60, 4.9% and 5.6% respectively. Total protein content of the F-60 strain was 59.7% per dry weight. And we compared their amino acid compositions with that of FAO provisional pattern. In the case of the F-60 strains, amino acid contents such as lysine, leucine and isoleucine were much higher than those of methionine, cystine and tryptophan.

  • PDF

A Two-stage Process for Increasing the Yield of Prebiotic-rich Extract from Pinus densiflora

  • Jung, Ji Young;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.380-392
    • /
    • 2018
  • The importance of polysaccharides is increasing globally due to their role as a significant source of dietary prebiotics in the human diet. In the present study, in order to maximize the yield of crude polysaccharides from Pinus densiflora, response surface methodology (RSM) was used to optimize a two-stage extraction process consisting of steam explosion and water extraction. Three independent main variables, namely, the severity factor (Ro) for the steam explosion process, the water extraction temperature ($^{\circ}C$), and the ratio of water to raw material (v/w), were studied with respect to prebiotic sugar content. A Box-Behnken design was created on the basis of the results of these single-factor tests. The experimental data were fitted to a second-order polynomial equation for multiple regression analysis and examined using the appropriate statistical methods. The data showed that both the severity factor (Ro) and the ratio of water to material (v/w) had significant effects on the prebiotic sugar content. The optimal conditions for the two-stage process were as follows: a severity factor (Ro) of 3.86, a water extraction temperature of $89.66^{\circ}C$, and a ratio of water to material (v/w) of 39.20. Under these conditions, the prebiotic sugar content in the extract was 332.45 mg/g.

Response Surface Methodological Approach for Optimization of Enzymatic Synthesis of Sorbitan Methacrylate

  • Jeong, Gwi-Taek;Lee, Kyoung-Min;Kim, Hae-Sung;Lee, Woo-Tai;Sunwoo, Chang-Shin;Park, Don-Hee
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.511-516
    • /
    • 2005
  • Sorbitan methacrylate was synthesized from sorbitan dehydrated from D-sorbitol using an immobilized lipase. To optimize the enzymatic synthesis of sorbitan methacrylate, response surface methodology was applied to determine the effects of five-level-four-factors and their reciprocal interactions on sorbitan methacrylate biosynthesis. A total of 30 individual experiments were performed, which were designed to study reaction temperature, reaction time, enzyme amount and substrate molar ratio. A statistical model predicted that the highest conversion yield of sorbitan methacrylate was 100%, at the following optimized reaction conditions: a reaction temperature of 43.06 $^{\circ}C$, a reaction time of 164.25 mins., an enzyme amount of 7.47%, and a substrate molar ratio of 3.98:1. Using these optimal factor values under experimental conditions in four independent replicates, the average conversion yield reached 98.7%${\pm}$1.2% and was well within the value predicted by the model.

  • PDF

Response Surface Methodological Approach for Optimization of Removal of Free Fatty Acid in Crude Oil

  • Jeong, Gwi-Taek;Lee, Kyoung-Min;Yang, Hee-Seung;Park, Seok-Hwan;Kim, Jae-Hoon;Kim, Do-Man;Park, Don-Hee
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.904-909
    • /
    • 2005
  • To optimize the removal of free fatty acid in crude vegetable oil, response surface methodology was applied to determine the effects of five level-four factors and their reciprocal interactions on removal of free fatty acid. A total of 30 individual experiments were performed, which were designed to study reaction temperature, reaction time, catalyst amount and methanol amount. A statistical model predicted that the highest removal yield of free fatty acid was 99.8%, at the following optimized reaction conditions: a reaction temperature of 64.99$^{\circ}C$, a reaction time of 36.20 mins., an catalyst amount of 13.01% (w/v), and a methanol amount of 15% (v/v). Using these optimal factor values under experimental conditions in three independent replicates, the average removal yield was well within the value predicted by the model.

  • PDF

Development of Pilot-Scale Scrubber for Simultaneous Removal of $SO_2/NO$

  • Jung, Seung-Ho;Jeong, Gwi-Taek;Lee, Gwang-Yeon;Park, Don-Hee;Cha, Jin-Myeong
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.468-474
    • /
    • 2005
  • SOx and NOx are known major precursors of acid rain and thus the abatement of their emissions is a major target in air pollution control. To obtain basic data on the removal process of simultaneous $SO_2/NO$, the optimal reaction condition and the composition of reaction solution for simultaneous removal of $SO_2/NO$, ware investigated using a bubble column reactor. Pilot scrubber was consisted of scrubber, filter and control box. Dust removal rate was 83, 92, and 97% with catalyst flux of 0.5, 0.8, 1.5 L/min, respectively Average dust removal efficiency with a kind of nozzle was about 94 and 90% in STS FF6.5 (5/8in.) and 14 of P.P W(1.0in.), respectively Dust and $SO_2$ were removed more than 98-96% regardless of reactor number. In the case of NO gas, removal yield of 83.3% was achieved after 48 hours in 1 stage, also removal yield of 95.7% was reached in 2 stages. In tile case of application of STS (5/8 in.) and P.P (1.0 in.) as used fill packing, removal efficiency was reached higher than 98% without related to of kind of fill packing.

  • PDF

Ethanol Production from Seaweed, Enteromorpha intestinalis, by Separate Hydrolysis and Fermentation (SHF) and Simultaneous Saccharification and Fermentation (SSF) with Saccharomyces cerevisiae

  • Cho, YuKyeong;Kim, Min-Ji;Kim, Sung-Koo
    • KSBB Journal
    • /
    • v.28 no.6
    • /
    • pp.366-371
    • /
    • 2013
  • Ethanol productions were performed by separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes using seaweed, Enteromorpha intestinalis (sea lettuce). Pretreatment conditions were optimized by the performing thermal acid hydrolysis and enzymatic hydrolysis for the increase of ethanol yield. The pretreatment by thermal acid hydrolysis was carried out with different sulfuric acid concentrations in the range of 25 mM to 75 mM $H_2SO_4$, pretreatment time from 30 to 90 minutes and solid contents of seaweed powder in the range of 10~16% (w/v). Optimal pretreatment conditions were determined as 75 mM $H_2SO_4$ and 13% (w/v) slurry at $121^{\circ}C$ for 60 min. For the further saccharification, enzymatic hydrolysis was performed by the addition of commercial enzymes, Celluclast 1.5 L and Viscozyme L, after the neutralization. A maximum reducing sugar concentration of 40.4 g/L was obtained with 73% of theoretical yield from total carbohydrate. The ethanol concentration of 8.6 g/L of SHF process and 7.6 g/L of SSF process were obtained by the yeast, Saccharomyces cerevisiae KCTC 1126, with the inoculation cell density of 0.2 g dcw/L.

Effects of Different Harvest Time and Enzyme on Rice Flour (출수시일과 조효소 처리 조건에 따른 쌀가루의 특성)

  • Kum, Jun-Seok;Lee, Sang-Hyo;Lee, Hyun-Yu;Han, Ouk
    • Korean journal of food and cookery science
    • /
    • v.10 no.2
    • /
    • pp.142-145
    • /
    • 1994
  • Effects of different harvest time were studied on chemical composition, yield, and hardeness of milled rice. There was no difference between harvest time after 33 days. Yield of milled rice was increased as harvest time increased and only rice flour prepared in harvest time after 45 days had a good appearance. Results of different enzyme solution treatment showed that a-amylase solution had the best result and optimal condition of soaking time was 4 hour.

  • PDF