• Title/Summary/Keyword: Optimal tuning

Search Result 426, Processing Time 0.027 seconds

Tuning of Fuzzy Logic Current Controller for HVDC Using Genetic Algorithm (유전알고리즘을 사용한 HVDC용 퍼지 제어기의 설계)

  • Jong-Bo Ahn;Gi-Hyun Hwang;June Ho Park
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.1
    • /
    • pp.36-43
    • /
    • 2003
  • This paper presents an optimal tuning method for Fuzzy Logic Controller (FLC) of current controller for HVDC using Genetic Algorithm(GA). GA is probabilistic search method based on genetics and evolution theory. The scaling factors of FLC are tuned by using real-time GA. The proposed tuning method is applied to the scaled-down HVDC simulator at Korea Electrotechnology Research Institute(KERI). Experimental result shows that disturbances are well-damped and the dynamic performances of FLC have the better responses than those of PI controller for small and large disturbances such as ULTC tap change, reference DC current change and DC ground fault.

Fuzzy Rules and Membership Functions Tunning of Fuzzy Controller Applying Genetic Algorithms of Speed Control of DC Motor (퍼지 제어기의 퍼지규칙 및 멤버쉽 함수 튜닝에 유전알고리즘을 적용한 직류 모터의 속도제어)

  • Hwang, G.H.;Kim, H.S.;Park, J.H.;Hwang, C.S.;Kim, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1021-1023
    • /
    • 1996
  • This paper proposes a design of self-tuning fuzzy rules and membership functions based on genetic algorithms. Sub-optimal fuzzy rules and membership functions are found by using genetic algorithms. Genetic algorithms are used for tuning fuzzy rules and membership functions. A arbitrary speed trajectories are selected for the reference input of the proposed methods. Experimental results show the good performance in the DC motor control system with the self-tuning fuzzy controller based on genetic algorithms.

  • PDF

A New Approach to Identify Optimal Properties of Shunting Circuits for Maximum Damping of Structural vibration using Piezoelectric Patches (파동전달 특성을 이용한 압전션트 감쇠의 새로운 최적화방법)

  • Park, Jun-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.465-468
    • /
    • 2004
  • The performance of the piezoelectric patches as vibration control elements depends on the shunting electronics which are designed to dissipate vibration energy through a resistive element. In this study, tuning of the shunting circuits is performed based on the wave propagation characteristics. Optimization of the electronic component is performed depending on the dynamic and geometric properties which include boundary conditions and position of the shunted piezoelectric patch relative to the structure. The developed tuning methods showed superior capabilities in minimizing structural vibration and noise radiation compared to other tuning methods. The tuned circuits are relatively insensitive to changes in modal properties and boundary conditions.

  • PDF

An alternative method for estimating lognormal means

  • Kwon, Yeil
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.4
    • /
    • pp.351-368
    • /
    • 2021
  • For a probabilistic model with positively skewed data, a lognormal distribution is one of the key distributions that play a critical role. Several lognormal models can be found in various areas, such as medical science, engineering, and finance. In this paper, we propose a new estimator for a lognormal mean and depict the performance of the proposed estimator in terms of the relative mean squared error (RMSE) compared with Shen's estimator (Shen et al., 2006), which is considered the best estimator among the existing methods. The proposed estimator includes a tuning parameter. By finding the optimal value of the tuning parameter, we can improve the average performance of the proposed estimator over the typical range of σ2. The bias reduction of the proposed estimator tends to exceed the increased variance, and it results in a smaller RMSE than Shen's estimator. A numerical study reveals that the proposed estimator has performance comparable with Shen's estimator when σ2 is small and exhibits a meaningful decrease in the RMSE under moderate and large σ2 values.

Hybrid Optimization Techniques Using Genetec Algorithms for Auto-Tuning Fuzzy Logic Controllers (유전 알고리듬을 이용한 자동 동조 퍼지 제어기의 하이브리드 최적화 기법)

  • Ryoo, Dong-Wan;Lee, Young-Seog;Park, Youn-Ho;Seo, Bo-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.1
    • /
    • pp.36-43
    • /
    • 1999
  • This paper proposes a new hybrid genetic algorithm for auto-tuning fuzzy controllers improving the performance. In general, fuzzy controllers use pre-determined moderate membership functions, fuzzy rules, and scaling factors, by trial and error. The presented algorithm estimates automatically the optimal values of membership functions, fuzzy rules, and scaling factors for fuzzy controllers, using a hybrid genetic algorithm. The object of the proposed algorithm is to promote search efficiency by the hybrid optimization technique. The proposed hybrid genetic algorithm is based on both the standard genetic algorithm and a modified gradient method. If a maximum point is not be changed around an optimal value at the end of performance during given generation, the hybrid genetic algorithm searches for an optimal value using the the initial value which has maximum point by converting the genetic algorithms into the MGM(Modified Gradient Method) algorithms that reduced the number of variables. Using this algorithm is not only that the computing time is faster than genetic algorithm as reducing the number of variables, but also that can overcome the disadvantage of genetic algoritms. Simulation results verify the validity of the presented method.

  • PDF

RCGA-Based Tuning of the 2DOF PID Controller (2자유도 PID 제어기의 RCGA기반 동조)

  • Hwang, Seung-Wook;Song, Se-Hoon;Kim, Jung-Keun;Lee, Yun-Hyung;Lee, Hyun-Shik;Jin, Gang-Gyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.948-955
    • /
    • 2008
  • The conventional PID controller has been widely employed in industry. However, the PID controller with one degree of freedom(DOF) can not optimize both set-point tracking response and disturbance rejection response at the same time. In order to solve this problem, a few types of 2DOF PID controllers have been suggested. In this paper, a tuning formula for a 2DOF PID controller is presented. The optimal parameter sets of the 2DOF PID controller are determined based on the first-order plus time delay process and a real-coded genetic algorithm(RCGA) such that the ITAE performance criterion is minimized. The tuning rule is then addressed using calculated parameter sets and another RCGA. A set of simulation works are carried out on three processes with time delay to verify the effectiveness of the proposed rule.

Genetic Optimization of Fyzzy Set-Fuzzy Model Using Successive Tuning Method (연속 동조 방법을 이용한 퍼지 집합 퍼지 모델의 유전자적 최적화)

  • Park, Keon-Jun;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.207-209
    • /
    • 2007
  • In this paper, we introduce a genetic optimization of fuzzy set-fuzzy model using successive tuning method to carry out the model identification of complex and nonlinear systems. To identity we use genetic alrogithrt1 (GA) sand C-Means clustering. GA is used for determination the number of input, the seleced input variables, the number of membership function, and the conclusion inference type. Information Granules (IG) with the aid of C-Means clustering algorithm help determine the initial paramters of fuzzy model such as the initial apexes of the, membership functions in the premise part and the initial values of polyminial functions in the consequence part of the fuzzy rules. The overall design arises as a hybrid structural and parametric optimization. Genetic algorithms and C-Means clustering are used to generate the structurally as well as parametrically optimized fuzzy model. To identify the structure and estimate parameters of the fuzzy model we introduce the successive tuning method with variant generation-based evolution by means of GA. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

Adaptive Control of Cell Recycled Continuous Bioreactor for Ethanol Production (에탄올 생산을 위한 세포재순환 연속 생물반응기의 적응제어)

  • 이재우;유영제
    • KSBB Journal
    • /
    • v.6 no.3
    • /
    • pp.263-270
    • /
    • 1991
  • The optimal cell concentration and dilution rate for maximum ethanol productivity were obtained using dynamic simulation in cell recycled continuous bioreactor. The good control performance was observed using rule-based STR (self-tuning regulator) compared to conventional STR. Rule-base contained the scheme to implement the STR in an efficient on-off way and the scheme for the controlled variable to reach the optimal value in a short time. Since a mathematical model was used to analyze and estimate the changes of the state variables and the parameters, it was possible to understand the physical meaning of the system.

  • PDF

A Note on Linear SVM in Gaussian Classes

  • Jeon, Yongho
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.3
    • /
    • pp.225-233
    • /
    • 2013
  • The linear support vector machine(SVM) is motivated by the maximal margin separating hyperplane and is a popular tool for binary classification tasks. Many studies exist on the consistency properties of SVM; however, it is unknown whether the linear SVM is consistent for estimating the optimal classification boundary even in the simple case of two Gaussian classes with a common covariance, where the optimal classification boundary is linear. In this paper we show that the linear SVM can be inconsistent in the univariate Gaussian classification problem with a common variance, even when the best tuning parameter is used.

Application Study of Reinforcement Learning Control for Building HVAC System

  • Cho, Sung-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.4
    • /
    • pp.138-146
    • /
    • 2006
  • Recently, a technology based on the proportional integral (PI) control have grown rapidly owing to the needs for the robust capacity of the controllers from industrial building sectors. However, PI controller generally requires tuning of gains for optimal control when the outside weather condition changes. The present study presents the possibility of reinforcement learning (RL) control algorithm with PI controller adapted in the HVAC system. The optimal design criteria of RL controller was proposed in the environment chamber experiment and a theoretical analysis was also conducted using TRNSYS program.