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Application Study of Reinforcement Learning Control for Building HVAC System

Sung-Hwan Cho'
Department of Mechanical & Automotive Engineering, JeonJu University, JeonJu 560-759, Korea

Key words: HVAC, PI control, Reinforce learning control, TRNSYS program

ABSTRACT: Recently, a technology based on the proportional integral (PI) control have grown
rapidly owing to the needs for the robust capacity of the controllers from industrial building
sectors. However, PI controller generally requires tuning of gains for optimal control when the
outside weather condition changes. The present study presents the possibility of reinforcement
learning (RL) control algorithm with PI controller adapted in the HVAC system. The optimal
design criteria of RL controller was proposed in the environment chamber experiment and a
theoretical analysis was also conducted using TRNSYS program.

Nomenclature

: behavior

: probability

: control gain

! target value

: reinforce value
. status

: temperature [T]
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Greek symbols

v : damped coefficient

Subscripts
i ! integrator controller

p : proportion controller, policy
t :time

1. Introduction

Most of industrial heating, ventilating, and
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air-conditioning (HVAC) systems and refrigera-
tion systems have a proportional integral (PI)
controller, When operational conditions changes,
such systems do not maintain their optimal con-
trol well, and subsequently the inappropriate
control increases the consumption of energy.
Therefore, it is necessary to determine the dy-
namic characteristics of a plant using appro-
priate tuning. This tuning process, however,
takes a lot of time and cost, and is less appli-
cable to a system having strong non-linear
properties and long delay time. Since the con-
trol performance may change after the tuning,
moreover, maintaining the optimal control re-
quires re-tuning. As a solution to these prob-
lems, self tuning control algorithms, e.g. neural
network control and reinforcement learning (RL)
control, have been used. The neural network
control has a slow learning rate in a compli~
cated neural network, and does not work in
neural saturation, and requires collecting a lot
of data in off-line mode.

Watkins et al.w developed Q-learning as an
optimal learning method. Anderson et al.(s'e) ap-
plied RL to a heating coil simulation to com-
pare it with neural network and PI controls in
terms of the theories and experimental settings
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of control variables and the abilities of lear-
ning. Barto et al” studied the learning and
execution of a program having real-time dy-
namic characteristics. Sutton® used a temporal
difference model as an evaluation function lear-
ning method of RL.

This study developed a model allowing the
control of learning in on-line mode and the
self-tuning to improve the control performance
of HVAC systems by using an RL control al-
gorithm which reinforces output control signals
of a PI controller. In the experiments of this
study, the model was applied to a HVAC sys-
tem in an actual construction. As a theoretical
study, a method of designing optimal rein-
forcement control, which is one of the most
important factors in a RL controller, was pro-
posed by creating control algorithms (PI, RL)
as a module of the TRNSYS program and us-
ing dynamic simulations under various different
conditions.

2. Control algorithm
2.1 Basic concepts

RL (Reinforce Learning) is an approach to op-
timal learning from interactions with the envi-
ronment given by reinforcement signals even
without a Iot of knowledge of the environment.
The Q-learning developed by Watkins et al.w is
the most popular RL technique, and an algo-
rithm to find an optimal action considering the
attenuation in the reinforcement for future ac-
tions. This algorithm defines Q-values of state-
action pairs to determine the optimal action at
each state.

RL has two components of learning: agent
and environment. The agent takes an action
suitable for the state given in the environment.
The environment sends to the agent reinforce-
ment signals indicating whether the action tak-
en will result in a suitable change of the state
and action. The agent learns from the repeti-

tion of these processes.
2.2 Reinforce learning control algorithm

The basic process of Q-learning can be de-
scribed as follows:
(1) The status, ‘s’ and the target value, @

7

(s, a) for action, ‘a’, is initialized to default,
usually zero.

(2) The current state ‘s’ is recognized.

(3) An action is chosen in accordance with
the state-action rules.

(4) The action 'a’ is performed at the given
state, and the followed environment is given as
St.

(5) The action applied as a result of a re-
inforcement and the compensation at the state
are defined as R (S, @;).

(6) The target value, @(S;, @) is a value
function at the given state, S:, and action, @,
and is described as Eq. (1),

T
Qn(swat) :Eg {kZ)O'%cR(St-f-krat-;-k)} (1)

where < is a damped coefficient, ranged from 0

to 1 and k is iteration number at the state S:.
(7) Adding the sum of immediate reinforce-

ment and future reinforcement to Eq. (1) give

T
Qulsyya,) = E, {R(sn a,) Z"/kR(SHk: at+k)J
E=1
1 (2)
= E, {R(s,, a)+ k2_307kR(st+k+lv at+k+l)}

(8) The policy evaluation in a dynamic pro-.
gram can be obtained by an iterative calcu-
lation until the value function converges into a
wanted sum. This iterative policy evaluation is
presented as the current value of the value
function as in Eq. (3),

AQW(St’a‘t) = Eg {R(s,, at)"”YQn(SHvaHl)} 3

- Q; (stv at) )
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where an expected value is determined for a
possible next state. The expected value re-
quires a single model in state transition proba-
bility, and if there is not a model, Monte Carlo
learning is to be used.

(9) A value iteration program, which is a
combination of policy evaluation and policy im-
provement, is used to improve the action-
choice policy and achieve optimal control

AQ, (3:’ a)= Qg {R(St’ a:)""YQn (5t+ 1 at+1)}
4
- Qw (St’ a‘t)

where learning rate, @, ranges 0<a;<1,
_ (10) Assuming that the total reinforcement
value is to be minimized, the Monte Carlo
learning expresses the value iteration for the
target value as Eq. (5),

AQn(Suat) =
a't{R(stvat)""’Y‘?'lEir;Qn(sHvaHl)} (5)

- @ (st! at)
2.3 Structure of RL controller

Watkins et al.w proved that the optimal sum
of reinforcement could be obtained by minimiz~
ing the target value, @, at the state when
choosing an action, 'a’. Figure 1 shows a sche-
matic of a RL controller combined with a PI
controller. TD error is temporal difference be-
tween target value and action value. @ algo-
rithm selects action considering the value of
TD error.

L Pl controller J-———-

Q-Algorithm l

Action selector

State
information

Iﬁnsors l rActuators '

Environment

Actions

Fig. 1 Structure of RL controller combined with
PI controller.

3. Experiments

In order to determine the applicability of RL
control technology to actual HVAC systems, a
RL controller and a PI controller were tested
at an environment chamber in Korea Institute
of Energy Research under winter conditions. The
RL controller (X,, K;) was arranged to reinforce
the control gains based on the PI controlier.

3.1 Application to environmental chamber

The environment chamber is a test facility
used to create artificial atmospheres for the
analysis of the performance of HVAC systems
and the thermal characteristics of a building,
e.g. interior environment, energy consumption,
and system capacity. The environment chamber
contains a test house which is constructed to

Table 1 Operation range of experimental system

Operation range

Indoor condition

24T (75.2°F)

Outdoor condition

—-5~10TC

Supply fan

Max.: 1,000 CMH (0.278 m3/kg), Min.: 200 CMH (0.055 m3/kg)

Return fan

Max.: 900 CMH (0.250 ms/kg), Min.: 200 CMH (0.055 m’/kg)

Cooling coil

Capacity: 13,608 kcal/h, Condenser: 9,072 kcal/h and 4,536 kcal/h,
Inlet cooling water temp.: 7°C, Outlet cooling water temp.: 13T

Supply set pressure

45 mmAq (448 Pa)




Application Study of Reinforcement Learning Control for Building HVAC System 141

Flow
Difference
Control Al

VAV

box
AHU control
Control Al

[p0 Jao sF H

TR ZIORIR
AO Al
— Control signal

-------- Sensor signal Control

e Temperature sensor  AQ Analog output
o Pressure sensor Al Analog input

Fig. 2 Schematic diagram of AHU.
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monitor the heating and air-conditioning loads
heat transfer in structures, and HVAC control.
Table 1 describes the operational conditions for
the instruments inside the test house.

Figure 2 illustrates the non-heated-floor room
in the test house and the variable~air-volume
HVAC system installed in the environment
chamber. The HAVC system maintained the air
supply temperature constant with the change
in interior loads, and controlled the room tem-
perature by changing the airflow for each room
and area.

3.2 System set-up

The operational control of the HVAC system
was composed of the supervisory control by
the main computer and the local loop control.
Figure 3 shows the operational control system
used to automatically control the HVAC sys-
tem for the test house. This study used both
the existing operational control system (BAS)
and the operatioha] control system (SCADA) for
the RL algorithm testing. For the existing op-
erational control system, an Ethernet TCP/IP-
based data interface was used for the super-
visory control and the local loop control to
monitor and control the data in real-time. As
it was impractical to make a test for a variety
of actual control algorithms, this study devel-
oped an operational control program using the

BAS SERVER SCADA

L—
Ethernet TCP/IP RS-485

$9000 ! 1 e
Controller scxi

(T ]

0

Local devices AHU Change over
Controf panel Switch

Fig. 3 System set-up for experiment.

PI control and RL control algorithms suitable for
this test to compare their control performances.

4. Results and discussions
4.1 Evaluation of RL controller

To assess the RL controller, the external and
interior temperatures under winter conditions
were maintained to 5C and 24T, respectively,
by controlling the heater coils using the PI
controller and the RL controller. Figure 4(a)
shows the reactions of the PI controller and
the RL controller to the temperature change
from 35C to 40C by stages. When the air
supply temperature was changed as shown in
Fig. 4(b), the RL controller worked better than
the PI controller: for example, the errors in
normal service decreased and the responses were
faster. It was also found that with the change
of operational settings, the RL controller rein-
forced the output control signals more than the
PI controller.

4.2 Optimization of design parameters

One of the important things in the design of
a RL controller is to determine the settings to
reinforce the output when the controller has
large input and output errors. This study ex-
amined the reactions to various reinforcement
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Fig. 4 Control performance of PI controller and RL controller combined with PI controller.
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Fig. 5 Flow chart of TRNSYS program.

signals under winter conditions to develop the
criteria for designing a RL controller. For the
examination, this study programmed the meth-
od of analyzing the PI controller and the RL
controller using the fin efficiency and effec-

tiveness-NTU and the method of controlling
the temperatures in a radiant heating room.
These methods were used as modules for the
TRNSYS program. Figure 5 shows a schema-
tic of the TRNSYS program.

4.3 Application to TRNSYS

The air is heated by the heating coils (Type
32) and then supplied to the interior (Type 19).
The air coming into the interior provides in-
formation for the control mechanism (Type 72),
and subsequently the PI controller and RL con-

Table 2 TRNSYS input data

System Parameter Data
Number of row deep/Number of parallel cooling circuits (-) 6/24
. Coil face area (m’) 417
(}égz}il;lg ggilll) Inside tube diameter (m) 0.02
Inlet air dry bulb temp/Inlet air wet bulb temp/Inlet water temp (C)  15/15/10
Mass flow rate of air/mass flow rate of water (kg/hr) 500/100
Max. flow rate/Inlet mass flow rate (kg/hr) 2500/100
Fluid specific heat rate (kJ/kgC) 1.012
Fan Max. power consumption (k]J/hr) 3,500
Fraction of pump power converted to fluid thermal energy, 0<fpa<1
Inlet fluid temp. (C) 09
Control function 15
Pipe inside diameter /length (m) 0.35/3.45
Overall loss coefficient based on inside pipe surface area (kJ/hr m’C) 2
Duct Fluid density (kg/m’) / specific heat rate (kJ/kg C) 1.2/1.012
Initial fluid temp./ Outlet temp. (T) 15/25

Mass flow rate (kg/hr) 100
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troller send control signals to the heating or
air-conditioning coils and the fan to control the
air supply suitably for each environment. The
information obtained from Type 19 area is de-
livered to the output processing section (Type
28) to produce the control data for the envi-
ronment. Table 2 lists the variables and inputs
used in the TRNSYS program. The inputs
were decided based on the actual settings of
each installation.

4.4 Variation on gain value of Pl controller

For a theoretical review, the external air tem-
peratures in summer and winter were set to 35
T and 57T, respectively, and the supply flow
was 600kg/hr. Figures 6 and 7 show the in-
terior temperatures of 3 cases, X, =15, K; =40,
K, =01, K; =05 and K, =6.0, K; =25. Although
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Fig. 6 Response of PI controller in heating
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Fig. 7 Response of PI controller in cooling
mode.

the interior temperature did not pursue well the
settings when the gain value of the PI con-
troller was &, =01, X;=05, but the case of
K, =60, K;=25 were pursued well the set-
tings at the both cases of heating and air-
conditioning.

4.5 Optimization on reinforce signal

A RL controller combined with a PI con-
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Fig. 8 Response of PI, RL controller under
winter condition.
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troller can reinforce control signals to respond
properly to external conditions and to reach the
settings even when control gains (X,, K;) are
not well controlled or external conditions are
rapidly changed. In this study, the gain values
(K,, K;) reviewed from the PI controller were
changed to compare the performances of the PI
controller and the RL controller at the winter
and summer conditions, ie. external temper-
atures of 5 and 35C, respectively, settings un-
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" Fig. 9 Response of PI, RL controller under
summer condition.

der the winter conditions to 22C and 27T.
The reinforcement value for -the RL controller
was set. from —05 to +05 When the gain
value was K, =60, K;=25 the gain was
so close to an optimum that the RL controller
was not effective. When the gain value re-
duced to X, =01, A;=05, the Pl gain was
not suitable for the system. However, the in-
terior temperature took a longer time to reach
the set temperature. This result shows that
using a RL controller makes it easier to reach
a set temperature even when the gain value of
a PI controller is not appropriate.

Figure 9 shows the control of air supply with
the change of PI gain values when the interior
temperature settings were changed to 22°C and
27C under the winter conditions, i.e. the ex-
terior temperature of 35T. Although the con-
trol of gain values X, K; was not appropriate,
the RL controller used together with the PI
controller increased the ability to pursue the
set temperatures. In other words, the RL con-
trol facilitated the adaptation to external envi-
ronments in both winter and summer condi-
tions.

Figures 10 and 11 shows the results of
changing the reinforcement signals of the RL
controller from 0.05 to 0.0 under the summer
and winder conditions, with the gain value of
(0.1, 05), which was not appropriate. As shown
in Fig. 10, the ability to attain the set temper-
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1.9 20 21 22 23
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Fig. 10 Response of PI, RL controller under
winter condition (X, =0.1, X; =05).



Application Study of Reinforcement Learning Control for Building HVAC System 145

23.01"‘? K
-l,‘, Setpent === == Reindorgement 10,05 |
_ iy Reintoreesnem 0.5
S . ' — = Reinforcement : 10.91
S 225 3
@
=1
o A
3 N
=3 gy s
E 220 S Betd P
& v Vogrtury
_,:,f,;" h
14s 28 27 28 )
Time (h)

Fig. 11 Response of PI, RL controller under
summer condition (&; =0.1, &; =05).

—_ e cooling mode
x (9] heating mode

0.8 [
g
& .
= Q6 . o
° o
P
3 04 o
i .
1A Q $ °
5 0.2

* *

-

00%01 0.01 . 0.1 1 10

Reinforcement

Fig. 12 Temperature difference (Tmax — Tmin) Of
indoor temperature with respect to re-
inforcement variation using PI, RL con-
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ature increased under the winter conditions when
the reinforcement signal was 0.05.

Figure 11 indicates that the reinforcement sig-
nal of 0.05 also enhanced the ability to reach
the set temperature under the summer condi-
tions. Figure 12 depicts the differences of the
maximum and minimum interior temperatures
when the reinforcement signals changed from
0.005 to 1.5 under the air-conditioning and heat-
ing conditions. In both modes, the differences
were almost constant at the reinforcement sig-
nal of 0.05. This result indicates for easier
control of air-conditioning and heating, it is
better to lower the reinforcement signal ratio
when designing a RL controller.

5. Conclusions

As one of methods to improve the perform-
ance of control in building HVAC system, re-
inforce learning control algorithm with self-

.synchronous capacity of PI controller was ap-

plied to this study. From the design of RL
controller combined with PI controller, experi-
mental and theoretical investigations are per-
formed. From the study, following descriptions
are concluded.

(1) Applying a RL control algorithm to a PI
controller enhances the reaction rate and the
quality of control in both air-conditioning and
heating.

(2) Under winter and summer conditions, the
reinforcement signal ratio influences the ability
to attain a set temperature: when the ratio is
lower the ability is better.

(3) Therefore, it is necessary to lower the
reinforcement signal ratio when designing a RL
controller used together with a PI controller for
both air-conditioning and heating systems.
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