• Title/Summary/Keyword: Optimal trolley

Search Result 33, Processing Time 0.024 seconds

Anti-sway Control of Crane (기중기의 흔들림 방지제어)

  • Roh, Chi-Weon;Lee, Kwang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.977-979
    • /
    • 1996
  • This paper presents an algorithm to control the undesirable sway of a suspended load in the crane system that has a trade-off between positioning the load and suppressing the sway of the load. The aim is to transport the load to a specified place with small sway angle as quickly as possible. Dynamic model is based on a simple pendulum driven by a velocity drive that is mostly used for actuating a trolley in industry. Proposed algorithm is composed of two parts : one is a off-line optimal trajectory generator, the other on-line tracking control. The former produces optimal trajectories minimizing energy under the speed constraint of velocity drive. The latter controls outputs to track the generated trajectories. Digital simulations and experiments are performed on a pilot crane to demonstrate the performance of the proposed control algorithm.

  • PDF

An Optimal Control of Container Crane Using Evolution Strategy (진화전략을 이용한 컨테이너 크레인의 최적제어에 관한 연구)

  • 이영진;이권순
    • Journal of Korean Port Research
    • /
    • v.12 no.2
    • /
    • pp.217-224
    • /
    • 1998
  • During the operation of crane system in container yard, the objective is to transport the load to a goal position as quick as possible without rope oscillation. The container crane is generally operated by an expert operator, but recently an automatic control system with high speed and rapid transportation is required. Therefore, we developed an optimal controller which has to control the crane system with disturbances. In this paper, we present a design of optima 2-DOF PID controller for the control of gantry crane which has to control swing motion and trolley position. We used evolution strategy(ES) to tune the parameters of 2-DOF PID controller. It was compared with general PID controller. The computer simulations show that the proposed method has better performances than the other method.

  • PDF

Swing-Motion Control System Design for the Crane Based on Simultaneous Optimum Design Approach (구조제와 제어계의 통합적 설계법을 이용한 크레인의 Swing-Motion 제어계 설계)

  • Jang Ji Seong;Kim Young Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.777-785
    • /
    • 2005
  • The swing motion control problem of a container hanging on the trolly is considered in the paper. In the container crane control problem, suppressing the residual swing motion of the container at the end of acceleration, deceleration or the case of that the unexpected disturbance input exists is main issue. For this problem, in general, many trolley motion control strategies are introduced and applied. In this paper, we introduce and synthesize a swing motion control system in which a small auxiliary mass is installed on the spreader made by ourselves. In this control system, the actuator reacting against the auxiliary mass applies inertial control forces to the container to reduce the swing motion in the desired manner. In many studies, the controllers used to suppress the vibration have been synthesized for the given mathematical model of plants. And, the designers have not been able to utilize the degree of freedom to adjust the structural parameters for the control object. To overcome this problem, so called 'Structure/control Simultaneous Method' is used. In this paper, the simultaneous design method is used to determine the optimum weight of moving mass such that the optimal system performance would be achieved. And the experimental result shows that the proposed control strategy is useful to the case of that the controlled system is exposed to the uncertainties and, robust to the unexpected disturbance inputs.

A Study on Performance Enhancement for Remote Operation of Industrial Equipments

  • Lho, Tae-Jung;Joo, Hyun-Woo;Kang, Dong-Jung;Song, Se-Hoon;Park, Ki-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.813-817
    • /
    • 2003
  • By increasing trades between countries, importance of harbors is becoming serious, including our country. When it comes to Container Crane Operation, the most important matter is how many containers are loaded in a truck or a ship by given time. This can be a crucial matter of harbors in taking care of materials. The present harbors' crane uses a wire-rope conveyance materials are transported in the air and have high free-angle of location. The sway can cause the delay of time, wrong position of Trolley and the damage of materials. In this study, we obtain the optimal PID parameters with GA(Genetic Algorithm) and apply those parameters to the PID Controller. In the result of the experimentation, we can see how effectively the PID controller, applied with the optimal parameters obtained by GA, can control the sway angle.

  • PDF

An Automatic Travel Control of a Container Crane using Neural Network Predictive PID Control Technique

  • Suh Jin-Ho;Lee Jin-Woo;Lee Young-Jin;Lee Kwon-Soon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.35-41
    • /
    • 2006
  • In this paper, we develop anti-sway control in proposed techniques for an ATC system. The developed algorithm is to build the optimal path of container motion and to calculate an anti-collision path for collision avoidance in its movement to the finial coordinate. Moreover, in order to show the effectiveness in this research, we compared NNP PID controller to be tuning parameters of controller using NN with 2-DOF PID controller. The experimental results jar an ATC simulator show that the proposed control scheme guarantees performances, trolley position, sway angle, and settling time in NNP PID controller than other controller. As a result, the application of NNP PID controller is analyzed to have robustness about disturbance which is wind of fixed pattern in the yard.

Design of GA-Fuzzy Controller for Position Control and Anti-Swing in Container Crane (컨테이너 크레인의 위치제어 및 흔들림 억제를 위한 GA-퍼지 제어기 설계)

  • 허동렬
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.16-21
    • /
    • 2000
  • In this paper we design a GA-fuzzy controller for position control and anti-swing at the destination point. Applied genetic algorithm is used to complement the demerit such as the difficulty of the component selection of fuzzy controller namely scaling factor membership function and control rules. lagrange equation is used to represent the motion equation of trolley and load in order to obtain mathematical modelling. Simulation results show that the proposed control technique is superior to a conventional optimal control in destination point moving and modification.

  • PDF

Anti-sway Control of Crane System using Time Optimal Control Method (최단시간 제어법을 이용한 크레인의 흔들림 방지제어)

  • 이진우;김상봉
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.23-29
    • /
    • 1997
  • In the control of crane system, the traversing time of the trolley must be reduced as much as possible and the swing must be stopped at the end point. To design the minimum time control system, Pontryagim maximum principle is applied. In order to implement the control algorithm, the dynamic equation is linearlized at an equilibrium point, so that the linear time invariant state equation can be obtained. The overall performance of the closed loop system is evaluated by means of computer simulations and practical experiments in a broad range of working conditions. The effectiveness is proved through the experimental results for the anti-sway control of the load and the position control of trolly. It is expected that the proposed system will make an important contribution to the industrial fields.

  • PDF

An Automatic Travel Control of a Container Crane using Neural Network Predictive PID Control Technique (신경회로망 예측 PID 제어법을 이용한 컨테이너 크레인의 자동주행제어)

  • Suh Jin Ho;Lee Jin Woo;Lee Young Jin;Lee Kwon Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.61-72
    • /
    • 2005
  • In this paper, we develop anti-sway control in proposed techniques for an ATC system. The developed algorithm is to build the optimal path of container motion and to calculate an anti-collision path for collision avoidance in its movement to the finial coordinate. Moreover, in order to show the effectiveness in this research, we compared NNP PID controller to be tuning parameters of controller using NN with 2 DOF PID controller. The experimental results for an ATC simulator show that the proposed control scheme guarantees performances, trolley position, sway angle, and settling time in NNP PID controller than other controller. As a result, the application of NNP PID controller is analyzed to have robustness about disturbance which is wind of fixed pattern in the yard. Accordingly, the proposed algorithm in this study can be readily used for industrial applications

Anti-Sway Position Control of an Automated Transfer Crane Based on Neural Network Predictive PID Controller

  • Suh Jin-Ho;Lee Jin-Woo;Lee Young-Jin;Lee Kwon-Soon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.505-519
    • /
    • 2005
  • In this paper, we develop an anti-sway control in proposed techniques for an ATC system. The developed algorithm is to build the optimal path of container motion and to calculate an anti-collision path for collision avoidance in its movement to the finial coordinate. Moreover, in order to show the effectiveness in this research, we compared NNP PID controller to be tuning parameters of controller using NN with 2 DOF PID controller. The simulation and experimental results show that the proposed control scheme guarantees performances, trolley position, sway angle and settling time in NNP PID controller than other controller. As the results in this paper, the application of NNP PID controller is analyzed to have robustness about disturbance which is wind of fixed pattern in the yard. Accordingly, the proposed algorithm in this study can be readily used for industrial applications.

An Optimal Design Algorithm of Pile Supported Foundations of Tower Cranes (타워크레인의 파일기초 최적설계 알고리즘 개발)

  • Ryu, Sang-Yeon;Seo, Deok-Seok;Kim, Sun-Kuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.95-101
    • /
    • 2009
  • As buildings increase in height, lifting plans are becoming increasingly important on construction sites. As a critical piece of load-lifting equipment, the tower crane deserves a well thought-out stability review, since it has a significant impact and is very vulnerable to structural safety disaster. To ensure the structural stability of a tower crane, its lateral support or pile supported foundation designs must include consideration for stability, and pile foundation must be used if site conditions prevent soil from providing the required bearing capacity, or prevent the foundation from being increased to the required extent. Pile supported foundation design requires thorough and systematic review, as more stability parameters need to be considered than with an independent foundation. This paper intends to develop an optimal design algorithm that can minimize associated costs while ensuring the fundamental stability of pile supported foundation design, limiting the scope of research to fixed-type trolley tower cranes using pile supported foundations. The findings herein on pile foundation stability review parameters, process and optimal design are expected to improve the operational efficiency of staff concerned, and reduce the time and efforts required for pile foundation design.