• Title/Summary/Keyword: Optimal trajectory

Search Result 364, Processing Time 0.029 seconds

A Study on Rendezvous Point between the Mobile Robot and Predicted Moving Objects (경로예측이 가능한 이동물체와 이동로봇간의 Rendezvous Point에 관한 연구)

  • Youn, Jung-Hoon;Lee, Kee-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.84-86
    • /
    • 2001
  • A new navigation method is developed and implemented for mobile robot. The mobile robot navigation problem has traditionally been decomposed into the path planning and path following. Unlike tracking-based system, which minimize intercept time and moved mobile robot distance for optimal rendezvous point selection. To research of random moving object uses algorithm of Adaptive Control using Auto-regressive Model. A fine motion tracking object's trajectory is predicted of Auto-regressive Algorithm. Thus, the mobile robot can travel faster than the target wi thin the robot's workspace. The can select optimal rendezvous point of various intercept time.

  • PDF

A Study on Orbit Transfer Methods for Solar Sail Spacecraft (태양돛 우주선의 궤도천이 기법 연구)

  • Kim, Min-Gyu;Kim, Jeongrae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.770-778
    • /
    • 2013
  • Solar sail propulsion uses solar radiation pressure to propel spacecraft without propellant, and it is useful for deep-space missions and continuos orbit maneuver missions. After a brief introduction of solar sail dynamics, locally optimal trajectories in Sun-centered and Earth-centered orbits are analyzed. Numerical simulations for the optimal trajectories are performed. Trajectory for the rendezvous with Halley comet is generated, and different planet escape methods are compared.

The Design of Fuzzy-Sliding Mode Control with the Self Tuning Fuzzy Inference Based on Genetic Algorithm and Its Application

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.182-182
    • /
    • 2000
  • This paper proposes a self tuning fuzzy inference method by the genetic algorithm in the fuzzy-sliding mode control for a robot. Using this method, the number of inference rules and the shape of membership functions are optimized without an expert in robotics. The fuzzy outputs of the consequent part are updated by the gradient descent method. And, it is guaranteed that the selected solution become the global optimal solution by optimizing the Akaike's information criterion. The trajectory trucking experiment of the polishing robot system shows that the optimal fuzzy inference rules are automatically selected by the genetic algorithm and the proposed fuzzy-sliding model controller provides reliable tracking performance during the polishing process.

  • PDF

Extended Operational Space Formulation for the Kinematics, Dynamics, and Control of the Robot Manipulators with Redundancy (여유자유도 로봇의 기구학, 동역학 및 제어를 위한 확장실공간 해석)

  • 장평훈;박기철;김승호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3253-3269
    • /
    • 1994
  • In this paper a new concept, named the Extended Operational Space Formulation, has been proposed for the effective analysis and real-time control of the robot manipulators with kinematic redundancy. The extended operational space consists of operational space and optimal null space. The operational space is used to describe robot end-effector motion; whereas the optimal null space, defined as the target space of the self motion manifold, is used to express the self motion for the secondary tasks. Based upon the proposed formulation, the kinematics, statics, and dynamics of redundant robots have been analyzed, and an efficient control algorithm has been proposed. Using this algorithm, one can optimize a performance measure while tracking a desired end-effector trajectory with a better computational efficiency than the conventional methods. The effective ness of the proposed method has been demonstrated with simulations.

Optimal Mission Design of the Supersonic Air-launching Rocket (초음속 공중발사로켓의 임무형상 최적설계)

  • Choi, Youngchang;Lee, Jaewoo;Byun, Yunghwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.67-72
    • /
    • 2005
  • Design and optimization study has been performed to obtain a supersonic air.launching mission for the nanosat launcher. Given mission is to launch 10kg payload to target orbit of $700km{\times}700km$. Additional design constraints are imposed by the mother plane. After the required velocity is obtained, the stag ing optimization is carried out. Serial analyses for the propulsion system and aerodynamics are performed then, the rocket trajectory optimization has been carried out. After several mission design and optimization iterations, the optimized mission which satisfies the mission target is obtained. Total weight of the three-staged air-launching rocket is 1231.4kg and the payload weight is 10 kg.

  • PDF

Design of Fuzzy-Sliding Model Control with the Self Tuning Fuzzy Inference Based on Genetic Algorithm and Its Application

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyn
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.58-65
    • /
    • 2001
  • This paper proposes a self tuning fuzzy inference method by the genetic algorithm in the fuzzy-sliding mode control for a robot. Using this method, the number of inference rules and the shape of membership functions are optimized without an expert in robotics. The fuzzy outputs of the consequent part are updated by the gradient descent method. And, it is guaranteed that he selected solution become the global optimal solution by optimizing the Akaikes information criterion expressing the quality of the inference rules. The trajectory tracking simulation and experiment of the polishing robot show that the optimal fuzzy inference rules are automatically selected by the genetic algorithm and the proposed fuzzy-sliding mode controller provides reliable tracking performance during the polishing process.

  • PDF

Path Planning for Manipulators Using Fourier Series (퓨리에 급수를 이용한 매니퓰레이터 경로 계획)

  • 원종화;최병욱;정명진
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.10
    • /
    • pp.27-36
    • /
    • 1992
  • This paper proposes a numerical method of motion planning for manipulators using Foruier series. For a redundant manipulator, we predetermine the trajectories of redundant joints in terms of the Nth partial sum of the fourier series. then the optimal coefficients of the fourier series are searched by the Powell's method. For a nonredundant or redundant manipulator, CS02T-continuous smooth joint trajectory for a point-to-point task can be obtained while considering the frequency response. We apply the proposed method to the 3-link planar manipulator and the PUMA 560 manipulator. To show the validity of the proposed method, we analyze solutions by the Fast Fourier Transform (FFT). Also, several features are discussed to obtain an optimal solution.

  • PDF

A Study on the Trajectory Control of a Autonomous Mobile Robot (자율이동로봇을 위한 경로제어에 관한 연구)

  • Cho, Sung-Bae;Park, Kyung-Hun;Lee, Yang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2417-2419
    • /
    • 2001
  • A path planning is one of the main subjects in a mobile robot. It is divided into two parts. One is a global path planning and another is a local path planning. This paper, using the formal two methods, presents that the mobile robot moves to multi-targets with avoiding unknown obstacles. For the shortest time and the lowest cost, the mobile robot has to find a optimal path between targets. To find a optimal global path, we used GA(Genetic Algorithm) that has advantage of optimization. After finding the global path, the mobile robot has to move toward targets without a collision. FLC(Fuzzy Logic Controller) is used for local path planning. FLC decides where and how faster the mobile robot moves. The validity of the study that searches the shortest global path using GA in multi targets and moves to targets without a collision using FLC, is verified by simulations.

  • PDF

Deriviation of the z-transfer Function of Optimal Digital Controller Using an Integral-Square-Error Criterion with the continuous-data Model in Linear Control Systems (선형연속데이터형 제어계통의 플랜트와 디지털모델의 오차자승적분지표에 의한 최적디지탈제어기의 전달함수유도)

  • Park, Kyung-Sam
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.6
    • /
    • pp.211-218
    • /
    • 1983
  • In this paper, an attempt is made to match the continuous state trajectory of the digital control system with that of its continuous data model. Matching the state trajectories instead of the output responses assures that the performances of the internal variables of the plant as well as the output variables are preserved in the discretization. The mathematical tool used in this research is an extended maximum principle of the Pontryagin type, which enables one to synthesize a staircase type of optimal control signals, such as the output signal of a zero-order hold asociated with a digital controller. A general mathematical expression of the digital controller which may be used to replace the analog controller of a general system while preserving as mauch as possible the performance characteristics of the original continuous-data control system is derived in this paper.

  • PDF

Anti-sway Control of Crane (기중기의 흔들림 방지제어)

  • Roh, Chi-Weon;Lee, Kwang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.977-979
    • /
    • 1996
  • This paper presents an algorithm to control the undesirable sway of a suspended load in the crane system that has a trade-off between positioning the load and suppressing the sway of the load. The aim is to transport the load to a specified place with small sway angle as quickly as possible. Dynamic model is based on a simple pendulum driven by a velocity drive that is mostly used for actuating a trolley in industry. Proposed algorithm is composed of two parts : one is a off-line optimal trajectory generator, the other on-line tracking control. The former produces optimal trajectories minimizing energy under the speed constraint of velocity drive. The latter controls outputs to track the generated trajectories. Digital simulations and experiments are performed on a pilot crane to demonstrate the performance of the proposed control algorithm.

  • PDF