• Title/Summary/Keyword: Optimal state-feedback controller

Search Result 96, Processing Time 0.03 seconds

Autonomous Pole Placement Controller Design of Two-Inertia Motor System Based on Genetic Algorithms (유전자 알고리즘을 사용한 2관성 모터 시스템의 자동 극배치 제어기 설계)

  • Gloria Suh;Park, Jung-Il
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.5
    • /
    • pp.317-325
    • /
    • 2003
  • The vibration, which often occurred in a two inertia motor system, makes it difficult to achieve a quick response of speed and disturbance rejection. This paper provides an autonomous pole assignment technique for three kinds of speed controllers (I-P, I-PD, and State feedback) using GAs(Genetic Algorithms) for a two-inertia motor system. Firstly, the optimal parameters are chosen using GAs in view of reducing overshoot and settling time, then those are used in computing the gains of each controller. Some simulation results verify the effectiveness of the proposed design. The proposed controller is expected to be the autonomous design way for controlling a two-inertia motor system with flexible shaft.

Congestion Control in ATM Networks Using Mixed-LQR

  • Song, Hae-Seok;Seo, Young-Bong;Choi, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.57.1-57
    • /
    • 2001
  • The objectives of congestion control in ATM (Asynchronous Transfer Mode) networks are maximum utilization of network resources, acceptable level of low cell loss and fairness among all VCs (Virtual Connections). In this paper, we present a congestion control algorithm which is based on state space model, The proposed controller uses optimal control algorithms (LQR, Mixed-LQR), where control parameters can be designed to ensure the stability of the control loop in a control theoretic sense, over the propagation delay. We show how the control mechanism can be used to design a controller to support ABR service based on feedback of explicit rates. Simulation results are presented to substantiate our claim.

  • PDF

Design of a Nonlinear Control System for Continuously Variable Transmission (무단 변속기를 위한 비선형 제어 시스템의 설계)

  • Park, Seong-Wook;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2348-2351
    • /
    • 2000
  • In order to operate SI(Spark Ignition) engine at the optimal fuel efficiency, it is necessary to use continuously variable transmission(CVT) which has more excellent fuel consumption property than transmissions of gear box types commonly used. This study introduces new type of nonlinear control approach to control precisely CVT including nonlinear characteristics. The nonlinear controller is basically composed of input-state feedback linearization, which can cancel the nonlinearities included in CVT on specific controllable area, and sliding-mode control. In this paper, good control performance of contrtol system with the nonlinear controller is confirmed with computer simulations.

  • PDF

A Study on Robust and Precise Position Control of PMSM under Disturbance Variation (외란의 변화가 있는 PMSM의 강인하고 정밀한 위치 제어에 대한 연구)

  • Lee, Ik-Sun;Yeo, Won-Seok;Jung, Sung-Chul;Park, Keon-Ho;Ko, Jong-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1423-1433
    • /
    • 2018
  • Recently, a permanent magnet synchronous motor of middle and small-capacity has high torque, high precision control and acceleration / deceleration characteristics. But existing control has several problems that include unpredictable disturbances and parameter changes in the high accuracy and rigidity control industry or nonlinear dynamic characteristics not considered in the driving part. In addition, in the drive method for the control of low-vibration and high-precision, the process of connecting the permanent magnet synchronous motor and the load may cause the response characteristic of the system to become very unstable, to cause vibration, and to overload the system. In order to solve these problems, various studies such as adaptive control, optimal control, robust control and artificial neural network have been actively conducted. In this paper, an incremental encoder of the permanent magnet synchronous motor is used to detect the position of the rotor. And the position of the detected rotor is used for low vibration and high precision position control. As the controller, we propose augmented state feedback control with a speed observer and first order deadbeat disturbance observer. The augmented state feedback controller performs control that the position of the rotor reaches the reference position quickly and precisely. The addition of the speed observer to this augmented state feedback controller compensates for the drop in speed response characteristics by using the previously calculated speed value for the control. The first order deadbeat disturbance observer performs control to reduce the vibration of the motor by compensating for the vibrating component or disturbance that the mechanism has. Since the deadbeat disturbance observer has a characteristic of being vulnerable to noise, it is supplemented by moving average filter method to reduce the influence of the noise. Thus, the new controller with the first order deadbeat disturbance observer can perform more robustness and precise the position control for the influence of large inertial load and natural frequency. The simulation stability and efficiency has been obtained through C language and Matlab Simulink. In addition, the experiment of actual 2.5[kW] permanent magnet synchronous motor was verified.

Optimal Guaranteed Cost Control of Linear Uncertain Systems with Input Constraints

  • Yu Li;Han Qing-Long;Sun Ming-Xuan
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.397-402
    • /
    • 2005
  • The guaranteed cost control problem for a class of linear systems with norm-bounded time-varying parameter uncertainties and input constraints is considered. A sufficient condition for the existence of guaranteed cost state feedback controllers is derived via the linear matrix inequality (LMI) approach, and a design procedure to guaranteed cost controllers is given. Furthermore, a convex optimization problem is formulated to determine the optimal guaranteed cost controller. An example is given to illustrate the effectiveness of the proposed results.

Structure-Control Combined Design with Structure Intensity

  • PARK JUNG-HYEN;KIM SOON HO
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.57-65
    • /
    • 2003
  • This paper proposes an optimum design method of structural and control systems, using a 2-D truss structure as an example. The structure is subjected to initial static loads and disturbances. For the structure, a FEM model is formed. Using modal transformation, the equation of motion is transformed into modal coordinates, in order to decrease D.O.F. of the FEM model. To suppress the effect of the disturbances, the structure is controlled by an output feedback $H_{\infty}$ controller. The design variables of the combined optimal design of the control-structure systems are the cross sectional areas of truss members. The structural objective function is the structural weight. The control objective function is the $H_{\infty}$ norm, the performance index of control. The second structural objective function is the energy of the response related to the initial state, which is derived from the time integration of the quadratic form of the state in the closed-loop system. In a numerical example, simulations have been perform. Through the consideration of structural weight and $H_{\infty}$ norm, an advantage of the combined optimum design of structural and control systems is shown. Moreover, since the performance index of control is almost nearly optimiz, we can acquire better design of structural strength.

Structure-Control Combined Design with Structure Intensity

  • Park, Jung-Hyen;Kim, Soon-Ho
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.6 no.1
    • /
    • pp.60-68
    • /
    • 2003
  • This paper proposes an optimum design method of structural and control systems, using a 2-D truss structure as an example. The structure is subjected to initial static loads and disturbances. For the structure, a FEM model is formed. Using modal transformation, the equation of motion is transformed into modal coordinates, in order to decrease D.O.F. of the FEM model. To suppress the effect of the disturbances, the structure is controlled by an output feedback $H_{\infty}$ controller. The design variables of the combined optimal design of the control-structure systems are the cross sectional areas of truss members. The structural objective function is the structural weight. The control objective function is the $H_{\infty}$ norm, the performance index of control. The second structural objective function is the energy of the response related to the initial state, which is derived from the time integration of the quadratic form of the state in the closed-loop system. In a numerical example, simulations have been perform. Through the consideration of structural weight and $H_{\infty}$ norm, an advantage of the combined optimum design of structural and control systems is shown. Moreover, since the performance index of control is almost nearly optimiz, we can acquire better design of structural strength.

  • PDF

Position control of the frictionless positioning device suspended by cone-shaped active magnetic bearings (원추형 자기 베어링 지지 무마찰 구동장치의 위치제어)

  • Jeong, Ho-Seop;Lee, Chong-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.181-187
    • /
    • 1996
  • A frictionless positioning device using cone-shaped active magnetic bearings(AMBs) is developed, which is driven by a brushless DC motor equipped with resolver. The cone-shaped AMB feature that the structure is simple and yet the five d.o.f. rotor motion is controlled by four magnet pairs. A linearized dynamic model, which accounts for the relationship between input voltage and output current in the cone-shaped magnet, is developed and the azimuth motion of the frictionless positioning device is modeled as the second order system. The feedback controller is designed by using linear quadratic regulator with integral action optimal control law so that the cone-shaped AMB system is stabilized and the frictionless positioning device gets the zero steady state. It is observed that the linearized dynamic model is adequate and the frictionless positioning device can achieve the tracking accuracy within the sensor resolution.

  • PDF

A Controller Design of a Magnetic Levitation System (자기부상 시스템의 제어기 설계)

  • Ha, Y.W.
    • Journal of Power System Engineering
    • /
    • v.4 no.3
    • /
    • pp.62-71
    • /
    • 2000
  • A mathematical modeling for a magnetic levitation system is proposed using the Taylor series expansion of differential function for obtaining linearity. It is confirmed that this kind of linear approximation method can be used to the modeling of a magnetic levitation system. The two-degree-of-freedom optimal servo system for a constant reference signal is proposed using the LQ optimization technique. An additional state feedback is introduced at the output of the integrator to cancel the integral action for reference signal if there is no modeling error of the plant and no disturbance input to the plant. When the modeling error or the disturbance input exists, the integral effect appears. The system has a free parameter which can b used to tune the effect of the integral compensation.

  • PDF

Optimal Design of Linear Quadratic Regulator Restrict Maximum Responses of Building Structures Subject to Stochastic Excitation (확률적 가진압력을 받는 건축구조물의 최대응답 제한을 위한 선형이차안정기의 최적설계)

  • 박지훈;황재승;민경원;조소훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.373-380
    • /
    • 2001
  • In this research, a controller design method based on optimization is proposed that can satisfy constraints on maximum responses of building structures subject to ground excitation modeled by partially stationary stochastic process. The class of controllers to be optimized is restricted to LQR. Weighting matrix on controlled outputs is used as design variable. Objective function constraint functions and their gradients are computed parameterizing control gain with Riccati matrix. Full state feedback controllers designed by Proposed optimization method satisfy various design objectives and their necessary maximum control forces are computed fur the production of actuator. Probabilities of maximum responses match statistical data from simulation results well.

  • PDF