• 제목/요약/키워드: Optimal process condition

검색결과 980건 처리시간 0.033초

영상신호의 고속처리를 위한 최적화 알고리즘에 대한 연구 (A Study of optimal algorithm for high-speed process of image signal)

  • 권기홍
    • 한국통신학회논문지
    • /
    • 제19권10호
    • /
    • pp.2001-2013
    • /
    • 1994
  • 본 논문에서는 훼손된 영상을 처리하는 방법에 대하여 연구하였다. 기존의 처리방법은 특이점이나 악 조건일 경우 수렴 속도가 늦어진다는 점과 처리시간이 많이 소요되는 단점이 있다. 이러한 단점을 보완하기 위하여 Gauss seidel 방법으로 처리하는 방법이 있으나 이러한 경우 영상을 반복해서 처리해야 하므로 처리시간이 많이 소요된다. 이러한 난점(수렴속도, 전체 처리시간)을 개선하기 위하여 본 논문에서는 기존의 신호처리(Gauss Seidel)와 제안된 알고리즘을 적용시켜 비교하여 봄으로써 특이한 혹은 악조건일 경우에도 수렴속도를 고속화하여 기존의 Gauss-Seidel 신호 처리 방법보다 처리 시간을 단축할 수 있는 영상 복원 방법을 제시하였다. 제안된 최적화 알고리즘을 영상신호에 적용시켜 가속 상수에 따른 처리 신호의 simulation과 MSE(mean-square error)의 변화를 비교하여 봄으로써 처리정도를 알아보았다. 그리고, 본 알고리즘의 유효성을 입증하기 위하여 모든 가속상수의 변화에 대한 영상복원 결과와 처리시간을 측정하여 보았다.

  • PDF

인공면역네트워크에 의한 자율이동로봇군의 동적 행동 제어 (Dynamic behavior control of a collective autonomous mobile robots using artificial immune networks)

  • 이동욱;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.124-127
    • /
    • 1997
  • In this paper, we propose a method of cooperative control based on immune system in distributed autonomous robotic system(DARS). Immune system is living body's self-protection and self-maintenance system. Thus these features can be applied to decision making of optimal swarm behavior in dynamically changing environment. For the purpose of applying immune system to DARS, a robot is regarded as a B lymphocyte(B cell), each environmental condition as an antigen, and a behavior strategy as an antibody respectively. The executing process of proposed method is as follows. When the environmental condition changes, a robot selects an appropriate behavior strategy. And its behavior strategy is simulated and suppressed by other robot using communication. Finally much simulated strategy is adopted as a swarm behavior strategy. This control scheme is based on clonal selection and idiotopic network hypothesis. And it is used for decision making of optimal swarm strategy.

  • PDF

Nylon 6 섬유의 초임계 유체 염색특성 연구 (I): 온도, 압력의 변화 (A Study on Dyeing Properties of Nylon 6 Fabrics in Supercritical Fluid Dyeing System (I): Depending on Temperature and Pressure)

  • 고은희;이인열;김창일
    • 한국염색가공학회지
    • /
    • 제32권2호
    • /
    • pp.80-88
    • /
    • 2020
  • Supercritical fluid dyeing is a new alternative to the conventional aqueous process because of its environmental benefits. In this study, dyeing properties of Nylon 6 fabrics were investigated depending on dyeing temperature and pressure in supercritical CO2 fluid dyeing system. In order to select the optimal condition for supercritical fluid dyeing of Nylon 6 fabrics, dyeing temperature and pressure were varied from 100, 110, 120℃, 200, 230, 260bar, respectively. The results of K/S values and levelling properties showed that the optimal dyeing condition for Nylon 6 fabrics was 110℃ and 230bar in the supercritical CO2 fluid dyeing system. The washing fastness ratings of the dyed Nylon 6 fabrics under supercritical medium were good for both fading and staining except for staining on nylon.

SUS416강의 효과적 가공을 위한 열처리 조건에 관한 연구 (A Study on the Heat Treatment Condition for Effective Manufacturing of SUS416 Steel)

  • 김홍건
    • 한국공작기계학회논문집
    • /
    • 제14권1호
    • /
    • pp.24-29
    • /
    • 2005
  • Optimal heat treatment process in martensitic stainless steel such as SUS416 is investigated. The approach is based on the combination of the interpolation and extrapolation method of a standard heat treatment technology with the principle of quenching and tempering temperature difference. The relationship of the macroscopic structure, fracture toughness and ductility as well as the hardness and strength are considered to induce a simple rule to apply with feasibility. Consequently, Optimal heat treatment condition in martensitic stainless steel is proposed and is shown the better quality. It was found that the smaller pain size of microstructure gives the enhanced fracture toughness and ductility.

다구찌 방법을 이용한 선체 외판 전처리 로봇의 최적 작업 조건 선정 (A Selection of the Optimal Working Condition for an Outer-hull Preprocessing Robot Using a Taguchi Method)

  • 정원지;김기정;김효곤;김정현;김호경;이동훈
    • 한국공작기계학회논문집
    • /
    • 제15권4호
    • /
    • pp.69-73
    • /
    • 2006
  • This paper present the optimal cleaning condition of the out-hull preprocessing robot by Taguchi method in design of experiments. A $L_8(2^4)$ orthogonal array is adopted to study the effect of adjustment parameters. The adjustment parameters consist of robot speed, motor torque, motor speed and tool angle. And the quality feature is selected as surface roughness of sheet metal. Taguchi analysis is performed in order to evaluate the effect of adjustment parameters of the quality feature of cleaning process by $Minitab^{(R)}$.

최적 절삭 조건을 고려한 절삭공구 선정 프로그램 개발 (Development of Tool and Optimal Cutting Condition Selection Program)

  • 신동오;김영진;고성림
    • 대한산업공학회지
    • /
    • 제26권2호
    • /
    • pp.165-170
    • /
    • 2000
  • In order to perform a successful material cutting process, the operators are to select the suitable machining tools and cutting conditions for the cutting environment. Up to now, this has been a complicated procedure done by the data in the tool manufacturers' paper catalog and the operator's experiencial knowledge, so called heuristics. This research is motivated by the fact that using computer techniques in processing vast amount of data and information, the operator can determine the tool and cutting condition easily. In the developed program, the selection of milling cutter, insert, and components are combined to provide optimal cutting speed, depth of cut, feed rate, rpm, and power. This program also provides the selection routine for end mill, drilling, turning, and grinding where the suitable tools are selected by workpiece, holder type, cut type, and insert shape.

  • PDF

자동차용 복합재료 드라이브샤프트 설계 및 성형 연구 (Design and Manufacturing of Composite Drive Shaft for Automobiles)

  • 김태욱;이상관;전의진;김완두;이대길
    • 한국자동차공학회논문집
    • /
    • 제1권3호
    • /
    • pp.109-117
    • /
    • 1993
  • A carbon/epoxy composite drive shaft used for the power transmission of the automobiles with steel joints. Compared with the metallic drive shaft, the composite one has the weight saving of 50% with equivalent torsional strength and fatigue characteristics. In this study, the filament winding technique for the composite tube and composite/metal joining technique are estabilished. The performance test of the drive shaft is carried out. The optimal condition of the surface roughness of the steel adherend was $1.5{{\mu}m}$ to $2.5{{\mu}m}$, and the optimal condition of the bonding thickness was 0.15mm. Maximum torque and torsional stiffness of the composite drive shaft manufactured by filament winding process were found to be $210kg{\cdot}m$ and $18.5kg{\cdot}m/deg$, respectively.

  • PDF

DOE를 적용한 WC(Co 0.5%)의 최적 연삭가공조건 연구 (Study on Optimal Grinding Condition of Tungsten Carbide(Co 0.5%) using DOE)

  • 김현욱;정상화;차두환;안준형;김상석;김혜정;김정호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.221-222
    • /
    • 2006
  • In recent years, the demands of the aspherical glass lenses increase since it is difficult to obtain the desirable performance in the plastic lens. Glass lens is manufactured by the forming with high precision mold core. This paper presents the analysis of optimal grinding condition of tungsten carbide(WC, Co0.5%) using design of experiments(DOE). The process parameters are turbin spindle, work spindle, feedrate and depth of cut. The experiments results are evaluated by MINITAB software.

  • PDF

자율이동로봇군의 협조전략과 군행동의 실현을 위한 면역시스템의 모델링 (An Immune System Modeling for Realization of Cooperative Strategies and Group Behavior in Collective Autonomous Mobile Robots)

  • 이동욱;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 춘계학술대회 학술발표 논문집
    • /
    • pp.127-130
    • /
    • 1998
  • In this paper, we propose a method of cooperative control(T-cell modeling) and selection of group behavior strategy(B-cell modeling) based on immune system in distributed autonomous robotic system(DARS). Immune system is living body's self-protection and self-maintenance system. Thus these features can be applied to decision making of optimal swarm behavior in dynamically changing environment. For the purpose of applying immune system to DARS, a robot is regarded as a B cell, each environmental condition as an antigen, a behavior strategy as an antibody and control parameter as a T-call respectively. The executing process of proposed method is as follows. When the environmental condition changes, a robot selects an appropriate behavior strategy. And its behavior strategy is stimulated and suppressed by other robot using communication. Finally much stimulated strategy is adopted as a swarm behavior strategy. This control scheme is based of clonal selection and idiotopic network hypothesis. And it is used for decision making of optimal swarm strategy. By T-cell modeling, adaptation ability of robot is enhanced in dynamic environments.

  • PDF

PAN 선구체로부터 활성 탄소섬유의 생산과 분석(I) (Preparation and Analysis of Activated Carbon Fiber from PAN Precursor(I))

  • 김진홍;이화선;박병기;정경락;김공주
    • 한국염색가공학회지
    • /
    • 제4권4호
    • /
    • pp.90-96
    • /
    • 1992
  • In the PAN-based ACF manufacturing system stabilization step was improved with chemical treatment (preoxidation) in order to yield higher carbon content and to avoid excessive fragmentation during carbonization and activation process. The optimal condition of preoxidation was at 18$0^{\circ}C$ for 4 minutes in sodium glyceroxide in glycerine (concentration of NaOH was 0.02 meq/g). To investigate low temperature stabilization effect, preoxidized PAN fiber heated 22$0^{\circ}C$ to 26$0^{\circ}C$ as a function of treatment time and oxidative gas atmosphere, and analysed by infrared spectrum and TGA. As a results of IR and TGA, it was clear that impregnated[preoxidative] PAN had 14% higher residual than untreated PAN at 100$0^{\circ}C$ and the optimal condition of stabilization was at 26$0^{\circ}C$ for 3.5 hours within $N_2$ atmosphere.

  • PDF