• Title/Summary/Keyword: Optimal performances

Search Result 626, Processing Time 0.022 seconds

Optimal Structural Design of a Tonpilz Transducer Considering the Characteristic of the Impulsive Shock Pressure (충격 특성을 고려한 Tonpilz 변환기의 최적구조 설계)

  • Kang, Kook-Jin;Roh, Yong-Rae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.987-994
    • /
    • 2008
  • The optimal structure of the Tonpilz transducer was designed. First, the FE model of the transducer was constructed, that included all the details of the transducer which used practical environment. The validity of the FE model was verified through the impedance analysis of the transducer. Second, the resonance frequency, the sound pressure, the bandwidth, and the impulsive shock pressure of the transducer in relation to its structural variables were analyzed. Third, the design method of $2^n$ experiments was employed to reduce the number of analysis cases, and through statistical multiple regression analysis of the results, the functional forms of the transducer performances that could consider the cross-coupled effects of the structural variables were derived. Based on the all results, the optimal geometry of the Tonpilz transducer that had the highest sound pressure level at the desired working environment was determined through the optimization with the SQP-PD method of a target function composed of the transducer performance. Furthermore, for the convenience of a user, the automatic process program making the optimal structure of the acoustic transducer automatically at a given target and a desired working environment was made. The developed method can reflect all the cross-coupled effects of multiple structural variables, and can be extended to the design of general acoustic transducers.

Semi-active bounded optimal control of uncertain nonlinear coupling vehicle system with rotatable inclined supports and MR damper under random road excitation

  • Ying, Z.G.;Yan, G.F.;Ni, Y.Q.
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.707-729
    • /
    • 2018
  • The semi-active optimal vibration control of nonlinear torsion-bar suspension vehicle systems under random road excitations is an important research subject, and the boundedness of MR dampers and the uncertainty of vehicle systems are necessary to consider. In this paper, the differential equations of motion of the coupling torsion-bar suspension vehicle system with MR damper under random road excitation are derived and then transformed into strongly nonlinear stochastic coupling vibration equations. The dynamical programming equation is derived based on the stochastic dynamical programming principle firstly for the nonlinear stochastic system. The semi-active bounded parametric optimal control law is determined by the programming equation and MR damper dynamics. Then for the uncertain nonlinear stochastic system, the minimax dynamical programming equation is derived based on the minimax stochastic dynamical programming principle. The worst-case disturbances and corresponding semi-active bounded parametric optimal control are obtained from the programming equation under the bounded disturbance constraints and MR damper dynamics. The control strategy for the nonlinear stochastic vibration of the uncertain torsion-bar suspension vehicle system is developed. The good effectiveness of the proposed control is illustrated with numerical results. The control performances for the vehicle system with different bounds of MR damper under different vehicle speeds and random road excitations are discussed.

Parametric optimization of FPSO hull dimensions for Brazil field using sophisticated stability and hydrodynamic calculations

  • Lee, Jonghun;Kim, Byung Chul;Ruy, Won-Sun;Han, Ik Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.478-492
    • /
    • 2021
  • In this study, hull dimensions of an FPSO were optimized to maximize its operability at Brazil field. In contrast with the previous works which have used simplified models to evaluate some indicators related to stability and hydrodynamic performances of FPSOs for its own optimal design, we developed a generic hull and compartment modeler and sophisticated stability and hydrodynamic calculation modules. With the aid of the developed tools, the hull optimization was performed with initial dimensions of an FPSO originally designed for west Africa field. The optimization results indicated the relative importance of hydrodynamic performances compared with stability performances for the FPSO hull dimensioning by showing that there were 3 active constraints related to them, which were the natural periods of heave and roll and the maximum pitch angle under 1-year return period waves at full load condition. To the author's knowledge, this study is the first attempt to combine altogether the hull and compartment modeling and full set of stability and hydrodynamic calculations precisely to optimize an FPSO's hull dimensions within 30 min. Also, it is worthwhile to mention that the developed methods are generic enough to be applied to all types of ship-shaped offshore platforms.

A Performance Analysis On Designed Value Of Photovoltaic System (태양광 발전시스템의 설계치에 대한 성능 비교분석)

  • So, J.H.;Yu, G.J.;Gang, G.H.;Lee, J.K.;Seok, J.K.;Choi, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1319-1321
    • /
    • 2002
  • This paper compares the performances of photovoltaic system by computer simulation with those of real photovoltaic system. We evaluate the performances of photovoltaic system by computer simulation considering system parameters of system specifications, installation and surrounding conditions etc. In the future, we will intend to develop an analysis tools and construct database for optimal design of photovoltaic system

  • PDF

Flow Control Throughput Performance Improvement of Adaptive Packet Length Allocation Scheme in Wireless Data Communication System (무선 데이타 통신 시스템에서 적응패킷길이할당방식을 이용한 흐름제어 기능 개선)

  • 정기호;박종영;금홍식;이상곤;류흥균
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.2
    • /
    • pp.11-18
    • /
    • 1995
  • Error detection in ARQ(Automatic Repeat Request) protocols is very important in wireless data communication systems. The throughput efficiency of ARQ protocols can be improved by dynamically adapting the protocol packet length so that it approaches the optimum value for throuhput efficiency. In this paper, a simple and novel adaptive packet length allocation method is proposed which transmits the packets with variable length by dyanmically estimating the channel codition. The simulation results show that the average of throughput is improved by 315.4% in the stop-and-wait protocol, 41.4% in the go-back-N protocol and 155.9% in the selective repeat protocol respectively. And the throughput performances of adaptive packet length allocation method approximately approach the theoritically optimal throughput performances.

  • PDF

Study on Performances of the Lever Type Anti-resonance Vibration Isolator (레버형 반공진 진동 절연기의 진동 특성 연구)

  • Yun, Jong-Hwan;Kim, Gi-Woo;Lee, Hyeongill
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.187-194
    • /
    • 2016
  • Parametric study on the lever type dynamic anti-resonance vibration isolator (DAVI) is executed to introduce the system in the path of vibration transmission for the vibratory response attenuation. The effects of inertia and location of the lever on the system performances are investigated using FEA. The effects of other parameters such as ratio of lever lengths, ratio of masses and the location of pivot are studied with analytical approach. According to the results, all the parameters except lever location affect the system response in their own ways. Consequently, the optimal lever type DAVI for translational or rotational system can be efficiently designed by selecting system parameters using the procedure introduced in this study.

An Equalization Technique for OFDM and MC-CDMA in a Slowly Time-Varying Multipath Fading Channel (시변 다중 경로 페이딩 채널에서 OFDM, MC-CDMA의 등화 기법)

  • 최종호;조용수
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06a
    • /
    • pp.3-7
    • /
    • 1996
  • In this paper, the performances of OFDM and MC-CDMA systems in a slowly-varying multipath fading environment is investigated. Time variation of the multipath channel leads to both a change of an optimal coefficient in one-tap equalizer and a loss of subchannel orthogornality, resulting in significant performance loss. A new simple one-tap equalizer which can reduce the effect of slowly time-varying multipath channel is proposed by taking into account time-variation of multipath profile and modifying the previous equalization techniques. It is demonstrated by computer simulation that the performances of OFDM and MC-CDMA systems can be improved by using the proposed one-tap equalizers when the multipath channel is slowly varying.

  • PDF

Design and Implementation of the GHz-Band Wide (2~18 GHz) Linear Equalizer

  • Kahng, Sung-Tek;Ju, Jeong-Ho;Moon, Won-Gyu
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.1
    • /
    • pp.42-46
    • /
    • 2007
  • This paper presents a linear amplitude equalizer developed to secure the linearity of the slope of the amplitude over the frequency band ranging $2\sim18\;GHz$. The circuit model is featured by the resistor placed between each pair of a transmission-line and a stub. The design includes finding the values of resistors and stubs to have the optimal linear slope and return loss performances. The measured data show the acceptable performances of the slope variation and return loss over $2\sim18\;GHz$.

A Study on Optimal Airspace Design for Continuous Climb Operation (연속상승운항을 위한 최적 공역 설계에 관한 연구)

  • Kim, Eun-Young;Hong, Sung-Kwon;Lee, Keum-Jin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.2
    • /
    • pp.15-20
    • /
    • 2015
  • This paper introduces a new airspace design method for continuous climb operation (CCO). The optimization problem is formulated as Mixed-Integer Linear Program (MILP) to maximize the upper limits of altitude on the waypoints to facilitate continuous climb for aircraft. In the proposed method, the interactions with other flight procedures are considered as well as various aircraft flight performances. The proposed method is applied to one of the departure procedures of Incheon International Airport (ICN) to demonstrate its performances.

Modal Characteristics and Vibration Control of Cylindrical Shell Structure: Experimental Results Comparison in the Air and Water (실린더형 쉘 구조물의 모드 특성 및 진동제어: 공기중 및 수중 실험결과 비교)

  • Sohn, Jung-Woo;Kwon, Oh-Cheol;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.384-389
    • /
    • 2009
  • In the present paper, dynamic characteristics and vibration control performance of a cylindrical shell structure are experimentally investigated and results are presented in the air and underwater conditions. End-capped cylindrical shell structure is manufactured and Macro-Fiber Composite (MFC) actuators are attached on the inside-surface of the structure. Modal characteristics are studied in the air and under the water conditions and then equation of motion of the structure is derived from the test results. Structural vibration control performances of the proposed structure are evaluated via experiments with optimal control algorithm. Vibration control performances are presented both in the frequency and time domains.

  • PDF