본 연구에서는 유역단위의 물수지 분석과 농업용수의 수문학적 매커니즘을 모의 할 수 있는 유역 모델링 방법을 이용하여 회귀수량 산정기법을 제시하고자 하였다. SWAT 모델을 이용하여 영산강수계 대표적인 농업지역인 만봉천 표준유역 (97.34 km2)에 대해 담수 논 모의가 고려된 유역물수지 분석을 실시하였다. 회귀수량 산정에 앞서, 나주 유량관측소의 일 유량 자료를 이용하여 SWAT을 검·보정하였다. R2, Nash-Sutcliffe Efficiency (NSE), Root-Mean-Square Error (RMSE)는 각각 0.73, 0.70, 0.64 mm/day으로 분석되었다. 3년 동안(2015~2017) 모의 결과를 토대로 관개기간(4/1~9/30)에 대한 신속 회귀수량과 공급량 대비 회귀율을 산정하였고, 평균 53.4%로 분석되었다. 본 연구에서 제시한 유역 회귀수량 모델링 기법은 향후 합리적인 유역물관리를 위한 최적 농업용수 공급방안에 대한 기초자료 구축에 활용될 수 있다.
본 논문에서는 네트워크 환경에서 원격사용자들의 몰입형 상호작용을 위한 딥러닝 기반의 그룹 동기화 기법을 제안한다. 그룹 동기화의 목적은 사용자의 몰입감을 높이기 위해서 모든 참여자가 동시에 상호작용이 가능하게 하는 것이다. 기존 방법은 시간 정확도를 향상을 위해 대부분 NTP(Network Time Protocol) 기반의 시간 동기화 방식에 초점이 맞추어져 있다. 동기화 서버에서는 미디어 재생 시간을 제어하기 위해 이동 평균 필터를 사용한다. 그 한 예로서, 지수 가중평균 방법은 입력 데이터의 변화가 크지 않으면 정확하게 재생 시간을 추종하고 예측하나 네트워크, 코덱, 시스템 상태의 급격한 변화가 있을 때는 안정화를 위해 더 많이 시간이 필요하다. 이런 문제점을 개선하기 위해서 데이터의 특성을 반영할 수 있는 딥러닝 기반의 그룹 동기화 기법인 DeepGroupSync를 제안한다. 제안한 딥러닝 모델은 시계열의 재생 지연 시간을 이용하여 최적의 재생 시간을 예측하는 두 개의 GRU(gated recurrent unit) 계층과 하나의 완전 연결 계층으로 구성된다. 실험에서는 기존의 지수 가중평균 기반 방법과 제안한 DeepGroupSync 방법에 대한 성능을 평가한다. 실험 결과로부터 예상하지 못한 급격한 네트워크 조건 변화에 대해서 제안한 방법이 기존 방법보다 더 강건함을 볼 수 있다.
Purpose: Recent emergence of diverse businesses in the distribution industry has led small and medium-sized retailers and their distribution logistics centers to face difficulties. Transactions between companies are connected within a supply chain, and the companies have relationships in the form of a supplier and a buyer. Therefore, it is important to identify causes of problems among companies through supply chain and strategic partnerships, thus developing optimal management plans and maximizing performances of companies. This study proposes that sustainable supply chain management consists of product quality, price quality, distribution quality, and promotion quality based on stakeholder theory and resource-based view. This study examined the impacts of sustainable chain management factors on satisfaction and win-win cooperation. Research design, data, and methodology: In the proposed model, satisfaction plays a mediating role in the relationship between sustainable chain management and win-win cooperation. The data were collected from 245 owners who use small and medium-sized distribution logistics center and analyzed using 2SLS (two-stage least square) with SPSS 28.0. Exploratory factor analysis and correlation analysis were used to assess the validity and reliability of constructs. Results: The findings are as follows. In the case of the total and Nadeulgage samples, product, price, and distribution quality had a significant positive effect on satisfaction, but in the case of Neighborhood super, product and price quality have a significant positive effect on satisfaction. Satisfaction has a significant positive effect on win-win cooperation in the overall, Nadeulgage, and Neighborhood super. Satisfaction plays a partial or full mediating role in the case of total, Nadeulgage, Neighborhood super. Conclusions: This study emphasized the need for sustainable supply chain management of small and medium-sized distribution logistics centers by examining the relationship between small and medium-sized distribution logistics centers and chain stores. It was found that store satisfaction plays an important role in the win-win cooperation between small and medium-sized distribution logistics centers and chain stores. Small and medium-sized distribution logistics centers can maximize product quality, price quality, distribution quality, and promotion quality by understanding the effect of chain store-related satisfaction and win-win cooperation on chain stores.
낙동강 하굿둑은 올해 2022년 해수 유입기간을 매월 대조기마다로 확대, 하굿둑 상류 15 km 이내로 기수역 조성을 목표로 운영되고 있다. 목표 기수역 조성구간 및 염수피해 방지를 위한 신속한 의사결정을 위해 본 연구에서는 딥러닝 알고리즘 Long Short-Term Memory(LSTM)을 적용하여 낙동대교(하굿둑 상류 약 5 km)지점의 염분 예측을 수행하였다. 창녕·함안보 방류량 등 낙동강 하구역의 시·공간적 특성을 반영하기 위한 입력데이터를 구축하였으며, Sequence length에 따른 정도 변화를 통해 낙동강 하구역의 수리학적 특성을 고려한 최적모델을 구축하였다. 예측 정확도는 결정계수(R-squred)와 RMSE(root mean square error) 이용하여 통계분석을 실시하였으며. Sequence length가 12일 때 R-squred 0.997, RMSE 0.122로 가장 정도가 높았으며, 선행 예측시간은 12시간 간격까지 R -squred 0.93 이상으로 높은 정도를 보였다.
X-ray 두개골 영상에서 주요 해부학적 부위들 간의 거리를 계측하는 것은 진단과 치료 등 임상적 의미에서 매우 중요하다. 최근에는 딥러닝 기술의 발전을 바탕으로 랜드마크를 식별 및 검출하는 자동화 시스템들이 제시되고 있다. 이러한 딥러닝 기반 모델을 과적합 없이 학습 시키기 위해서는 대량의 영상과 라벨링 데이터가 필요하다. 기존에는 숙련된 판독의가 환자의 영상에서 랜드마크를 수동으로 식별하여 라벨링하는 방식으로 계측이 이루어져 왔다. 그러나 이러한 계측 방식은 많은 비용이 소요될 뿐만 아니라, 재현성이 떨어지기 때문에 자동화된 라벨링 방법에 대한 필요성이 제기되고 있다. 또한, X-ray 영상에는 광자가 통과하는 경로 상의 여러 인체조직들이 표시되기 때문에 랜드마크 식별이 일반 자연 이미지 또는 삼차원 모달리티 영상에 비해 어렵다. 본 연구에서는 X-ray 영상 내에 대량의 라벨링 데이터 생성을 가능하게 하는 기하학적 데이터 증강 기법을 제안하고 있다. 또한, 두개골 내 주요한 16개 랜드마크들의 검출 성능을 향상시키기 위해 다양한 어텐션 기법들의 구현 및 적용을 통해 랜드마크 검출을 위한 최적의 어텐션 메커니즘을 제시하였다. 마지막으로 주요 두개골 랜드마크들 중 안정적인 검출이 보장되는 마커들을 도출하였으며, 이러한 마커들은 임상적인 활용 가능성이 높을 것으로 기대된다.
기후변화 감시에 위성 자료 활용을 위해 GCOS (Global Climate Observing System)는 시공간 해상도, 시간 변화에 따른 안정성, 불확실도 등의 요구사항을 제시하고 있다. 천리안위성 2A호의 경우, 센서의 한계로 인해 산출물들이 공간해상도 조건에 충족하지 못하는 경우가 많다. 따라서 본 연구에서는 영상융합 기법들을 천리안위성 2A호 영상에 적용하여 산출물 생성 시 활용될 수 있는 최적의 기법을 찾고자 한다. 이를 위해 CS (Component Substitution), MRA (Multiresolution Analysis), VO (Variational Optimization), DL (Deep Learning)에 포함되는 총 6가지 영상융합 기법을 활용하였다. DL의 경우 합성적(Synthesis) 특성 기반 방법을 훈련자료 구축에 사용하였다. 합성적 특성 기반 방법의 과정은 PAN (Panchromatic)과 MS (Multispectral) 영상의 공간해상도 차이만큼 두 영상의 해상도를 낮춰 융합 영상을 생성한 후 원본 MS 영상과 비교한다. 합성적 특성 기반 방법은 공간해상도를 저하시킨 PAN 영상과 MS 영상 간 기하 특성이 같아야 사용자가 원하는 수준의 융합 영상을 제작할 수 있다. 하지만, 훈련자료 구축 시 비유사성이 존재하기에 이를 최소화하는 방법으로 무작위 비율을 활용한 PSGAN 모델(PSGAN_RD)을 추가로 활용하였다. 융합 영상의 검증은 일관성(consistency) 및 합성적 특성 기반 정성적, 정량적 분석을 수행하였다. 분석 결과, 영상융합 알고리즘 중 GSA가 공간 유사도를 나타내는 평가지수에서 가장 높은 수치를 보였으며, 분광 유사도를 나타내는 지수들은 PSGAN_RD 모델의 정확도가 가장 높았다. 융합 영상의 공간 및 분광 특성을 모두 고려한다면 PSGAN_RD 모델이 천리안위성 2A호 산출물 제작에 가장 최적일 것으로 판단하였다.
본 연구는 말 산업의 대중인식 제고를 위하여 향후 플랫폼을 설계함에 있어 어떠한 요인이 대중에게 중요한 요인으로 작용할 것인지 알아보고, 이를 통해 최적의 플랫폼 설계에 대한 혜안을 제시하기 위해 말 산업의 플랫폼 설계요인에 대한 실증연구를 수행하였다. 본 연구수행을 위하여 말 산업에 대한 관심이 있는 국내 성인 300명을 대상으로 구조화된 설문지를 배포하여 자료를 수집하고, 통계처리프로그램 SPSS 22.0 Ver를 활용하여 설정한 연구문제들을 검증하였다. 연구 결과, 소비자 태도에 대하여는 중심경로 중 정보의 유용성이, 주변 경로 중 정보원천의 유희성이 가장 강한 영향을 미치는 요인인 것으로 나타났으며, 소비자의 행동의도에 대해서는 중심경로 중 정보의 최신성이, 주변경로 중 정보원천의 매력성이 가장 강한 영향을 미치는 요인인 것으로 나타났다. 또한, 소비자의 말 산업 플랫폼에 대한 긍정적인 태도는 향후 말 산업에 대한 구매의도와 긍정적 구전의도에 대해 정(+)적인 영향을 미치는 요인인 것으로 나타났다. 이러한 결과를 통하여 본 연구자는 말 산업에 대한 대중의 인식 제고를 위하여 말 산업과 관련한 유용한 정보를 재미있게 풀어낼 수 있는 콘텐츠 설계가 필요하며, 실질적인 수요를 이끌어 내기 위해서 말 산업과 관련한 최신동향을 상시 제공할 수 있어야 하며, 플랫폼이 보다 매력적으로 느껴질 수 있는 디자인 구성이 필요하다는 점을 시사하였다.
본 연구는 자연어처리의 분석목적과 추론데이터 성격에 적합한 한국어 사전훈련 언어모델의 특성을 실증분석했다. 이를 위해 자연어생성이 가능한 대표적 사전훈련 언어모델인 BART와 GPT 모델을 실험에 사용했다. 구체적으로 한국어 텍스트를 BART와 GPT 모델에 학습한 사전훈련 언어모델을 사용해 문서요약 생성 성능을 비교했다. 다음으로 추론데이터의 특성에 따라 언어모델의 성능이 어떻게 달라지는지 확인하기 위해 6가지 정보전달성과 4가지 창작물 유형의 한국어 텍스트 문서에 적용했다. 그 결과, 모든 문서유형에서 인코더와 디코더가 모두 있는 BART의 구조가 디코더만 있는 GPT 모델보다 더 높은 성능을 보였다. 추론데이터의 특성이 사전훈련 언어모델의 성능에 미치는 영향을 살펴본 결과, KoGPT는 데이터의 길이에 성능이 비례한 것으로 나타났다. 그러나 길이가 가장 긴 문서에 대해서도 KoGPT보다 KoBART의 성능이 높아 다운스트림 태스크 목적에 맞는 사전훈련 모델의 구조가 자연어생성 성능에 가장 크게 영향을 미치는 요소인 것으로 나타났다. 추가적으로 본 연구에서는 정보전달성과 창작물로 문서의 특징을 구분한 것 외에 품사의 비중으로 문서의 특징을 파악해 사전훈련 언어모델의 성능을 비교했다. 그 결과, KoBART는 어미와 형용사/부사, 동사의 비중이 높을수록 성능이 떨어진 반면 명사의 비중이 클수록 성능이 좋았다. 반면 KoGPT는 KoBART에 비해 품사의 비중과 상관도가 낮았다. 이는 동일한 사전훈련 언어모델이라도 추론데이터의 특성에 따라 자연어생성 성능이 달라지기 때문에 다운스트림 태스크에 사전훈련 언어모델 적용 시 미세조정 외에 추론데이터의 특성에 대한 고려가 중요함을 의미한다. 향후 어순 등 분석을 통해 추론데이터의 특성을 파악하고, 이것이 한국어 생성에 미치는 영향을 분석한다면 한국어 특성에 적합한 언어모델이나 자연어생성 성능 지표 개발이 가능할 것이다.
우주 측지 기술 사이의 상대적인 위치 관계를 설명하는 벡터를 결정하기 위해서는 VLBI IVP (Very Long Baseline Interferometry Invariant Point)의 위치를 정밀하게 계산하여야 한다. 이를 위해 일반적으로 VLBI 안테나에 반사 타겟을 부착한 후 필라들로부터 경사 거리, 수평각, 수직각을 관측한다. 그 다음 단계에서는 관측값과 미지수를 연결하는 수학 모델을 이용하여 조정 계산을 수행하게 된다. 따라서 계산된 미지수는 관측값의 정밀도에 영향을 받게 된다. 이때 특히 문제가 되는 것은 반사 타켓이 일반적인 측량 정밀도를 확보하기 어려운 곳에 위치하고 있다는 점이다. 즉, 반사 타겟의 방향을 조정하여 측량 기기에 정확하게 맞출 수 없다는 것이다. 따라서 이러한 부분은 관측 오차에 또 다른 형태로 나타날 것이며 조정 계산 시 오차 모델링에 오류를 발생시킬 수도 있다. 본 연구에서는 조정 계산 후 계산된 잔차의 특성에 대한 분석을 수행하였다. 먼저 관측 타입별 통계 분석을 통해 정규성을 검정하였으며 분산에 차이가 있는 지에 대한 검정도 실시하였다. 관측 타입별로 등분산 검정을 한 경우 분산이 서로 다른 것으로 나타났다. 각 필라에 대해 관측 타입별 등분산 검정을 했을 때 경사 거리와 수평 및 수직각 사이에는 분산에 차이가 있는 것으로 나타났다. 따라서 결합 측량으로부터 최적의 결과를 얻기 위해서는 관측 오차에 대해 보다 세분화된 모델링이 필요한 것으로 나타났다.
기존의 뜬구조공법의 문제점을 개선하여 지하층 리모델링, 증축 시 안정성 확보와 공사비 절감이 가능한 공법을 개발하기 위하여 일반적인 마이크로파일에 비해 경제적이고 안정성 높은 확장형 강관말뚝을 개발하였다. 확장형 강관말뚝은 지중에서 강관을 확장하여 강관의 성능을 향상하는 공법으로 본 논문에서는 확장형 강관말뚝의 강관 형상에 따른 좌굴강도의 변화를 파악하고, 수치해석 모델을 개발하여 강관확장으로 인한 요철부의 턱효과를 규명하고, 재료시험을 통하여 최적 강관 확관량을 산정하였다. 강관의 확장 직경이 클수록 확관 턱 개수가 많을수록 좌굴강도가 커짐을 알 수 있었으며, 수치해석 결과에 따르면 확관률보다 확관 턱 개수가 좌굴강도에 큰 영향을 미침을 알 수 있었으며, 확관률는 1.2배 이상일 때, 확관 턱 개수는 증가할수록 좌굴강도 증가 효과가 크게 발생함을 알 수 있었다. 또한, 확장 각도가 45° 이하이고, 확관률이 1.3배 이상일 때 요철부의 턱효과가 크게 발생하는 것을 알 수 있었다. 강관이 파단되는 항복 시, 신율은 20~32%로 평균 25.4% 수준으로 확인되어 그 이상 변형은 강관의 성능을 발휘할 수 없었다. 재료시험을 통해 강관의 성능을 발휘하기 위한 최대 확관량은 항복 시 최저값으로 확인된 신율 20%에 안전측 80%를 고려하여 16%로 제한하는 것이 바람직한 것으로 분석되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.