• 제목/요약/키워드: Optimal matrix

검색결과 928건 처리시간 0.044초

Relay Selection Based on Rank-One Decomposition of MSE Matrix in Multi-Relay Networks

  • 배영택;이정우
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2010년도 하계학술대회
    • /
    • pp.9-11
    • /
    • 2010
  • Multiple-input multiple-output (MIMO) systems assisted by multi-relays with single antenna are considered. Signal transmission consists of two hops. In the first hop, the source node broadcasts the vector symbols to all relays, then all relays forward the received signals multiplied by each power gain to the destination simultaneously. Unlike the case of full cooperation between relays such as single relay with multiple antennas, in our case there is no closed form solution for optimal relay power gain with respect to minimum mean square error (MMSE). Thus we propose an alternative approach in which we use an approximation of the cost function based on rank-one matrix decomposition. As a cost function, we choose the trace of MSE matrix. We give several simulation results to validate that our proposed method obtains a negligible performance loss compared to optimal solution obtained by exhaustive search.

  • PDF

측정연산자에 의한 병렬기구 틸팅 테이블의 관측성에 관한 연구 (Study on the Observability of a Calibration System for a Parallel Tilting Table with Measuerment Operator)

  • 박근우;이민기;김태성
    • 대한기계학회논문집A
    • /
    • 제29권6호
    • /
    • pp.795-803
    • /
    • 2005
  • This paper studies the observability of calibration system with a measurement operator. The calibration system needs a simple digital indicator to measure the mobile table movements with respect to the MC coordinate. However, it yields the concern about the poor parameter observability due to measuring only a part of the movements. We uses the QR-decomposition to find the optimal calibration configurations maximizing the linear independence of rows of an observation matrix. The number of identifiable parameter is examined by the rank of the observation matrix, which represents the parameter observability. The method is applied to a 6-axis MC with parallel tilting table and the calibration results are presented. These results verify that all necessary kinematic parameters are observable and the calibration system has robustness to the noise using optimal calibration configurations.

A controller design using modal decomposition of matrix pencil

  • Shibasato, Koki;Shiotsuki, Tetsuo;Kawaji, Shigeyasu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.492-492
    • /
    • 2000
  • This paper proposes LQ optimal controller design method based on the modal decomposition. Here, the design problem of linear time-invariant systems is considered by using pencil model. The mathematical model based on matrix pencil is one of the most general representation of the system. By adding some conditions the model can be reduced to traditional system models. In pencil model, the state feedback is considered as an algebraic constraint between the state variable and the control input variable. The algebraic constraint on pencil model is called purely static mode, and is included in infinite mode. Therefore, the information of the constant gain controller is included in the purely static mode of the augmented system which consists of the plant and the control conditions. We pay attention to the coordinate transformation matrix, and LQ optimal controller is derived from the algebraic constraint of the internal variable. The proposed method is applied to the numerical examples, and the results are verified.

  • PDF

고속압밀법에 의해 제작된 유리섬유강화 PET 기지 복합재료의 최적제작조건 (Optimal Manufacturing Conditions of Glass Fiber Reinforced PET Matrix Composites by Rapid Press Consolidation Technique)

  • 이동주;신익재;김홍건
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.813-821
    • /
    • 2002
  • Glass fiber reinforced PET matrix composite was manufactured by rapid press consolidation technique as functions of temperature, pressure and time in pre-heating, consolidation and solidification stages. The optimal manufacturing conditions for this composite were discussed based on the void content, tensile, interlaminar shear and impact properties. In addition, the levels of crystallinity with various manufacturing conditions were measured using differential scanning calorimetry to investigate the mechanical properties of this composite material as a function of crystallinity. Among many processing parameters, the mold temperature and the cooling rate after forming were found to be the most critical factors in determining the level of crystallinity and mechanical properties. The level of crystallinity affects the tensile properties to some degree. However, impact properties are affected much more. It also affects the degree of ductility, which determines the impact energy of this material.

Optimal sensor placement for bridge damage detection using deflection influence line

  • Liu, Chengyin;Teng, Jun;Peng, Zhen
    • Smart Structures and Systems
    • /
    • 제25권2호
    • /
    • pp.169-181
    • /
    • 2020
  • Sensor placement is a crucial aspect of bridge health monitoring (BHM) dedicated to accurately estimate and locate structural damages. In addressing this goal, a sensor placement framework based on the deflection influence line (DIL) analysis is here proposed, for the optimal design of damage detection-oriented BHM system. In order to improve damage detection accuracy, we explore the change of global stiffness matrix, damage coefficient matrix and DIL vector caused by structural damage, and thus develop a novel sensor placement framework based on the Fisher information matrix. Our approach seeks to determine the contribution of each sensing node to damage detection, and adopts a distance correction coefficient to eliminate the information redundancy among sensors. The proposed damage detection-oriented optimal sensor placement (OSP) method is verified by two examples: (1) a numerically simulated three-span continuous beam, and (2) the Pinghu bridge which has existing real damage conditions. These two examples verify the performance of the distance corrected damage sensitivity of influence line (DSIL) method in significantly higher contribution to damage detection and lower information redundancy, and demonstrate the proposed OSP framework can be potentially employed in BHM practices.

WSM-AHP법의 정식화를 통한 주거지 확산 지역의 최적 잠재력 표면의 추정 (Estimating Optimal Potential Surface for Spatial Expansion of Built-up Area by Formulating WSM-AHP Method)

  • 김대식
    • 한국농공학회논문집
    • /
    • 제50권3호
    • /
    • pp.91-104
    • /
    • 2008
  • This study developed the WSM (weighted scenario method)-AHP method that can optimize the weighting value for multi-criteria to make GIS grid-based potential surface. The potential surface has been used to simulate urban expansion using distributed cellular automata model and to generate land-use planning as basic data. This study formulated the WSM-AHP method in mathematically and applied to test region, Suwon city, which located on south area from Seoul. WSM-AHP method generates potential map for each pair of weighting value for all criteria, which one criterion is weighted with high weighting value and the others use low weighting value, considering that the summation for all criteria weighting values should be "1". The potential change rate to the step of weighted scenario for weighting value of criteria is standardized like AHP intensity matrix in this study. From the standard potential change rate, WSM-AHP intensity matrix is completed, and then the optimal weighting value is calculated from the maximum eigenvector of the WSM-AHP matrix, according to the new WSM-AHP method developed in this study. The applied results of new method showed that the optimal weighting value from WSM-AHP is more resonable than the general AHP specialists' evaluation for weighting value. The another new finding of this study is to suggest the deterministic approach to optimize the weighting value for the distributed CA model, which is used to find new city area and to generate rational land-use planning.

Reed-Muller 전개식에 의한 3치 논리회로의 설계 (Design of Ternary Logic Circuits Based on Reed-Muller Expansions)

  • 성현경
    • 한국정보통신학회논문지
    • /
    • 제11권3호
    • /
    • pp.491-499
    • /
    • 2007
  • 본 논문에서는 Reed-Muller 전개식에 의한 3치 논리 회로를 설계하는 한 가지 방법을 제시하였다. 제시된 3치 논리 회로의 설계 방법은 Reed-Muller 전개식의 계수에 대하여 모든 변수의 차수를 검사하여 RME 모듈(Reed-Muller Expansions module)의 수를 최소화하는 최적의 제어 입력 변수의 순서를 결정한다. 최적의 제어 입력 변수의 순서는 회로 비용 행렬의 계산에 사용되며, 이 회로 비용 행렬의 계산 결과를 이용하여 Reed-Muller 전개식에 의한 RME 모듈의 나무 구조의 3치 논리 회로를 설계한다. 제시된 방법은 최적 제어 입력 변수를 찾는데 유일하게 단위시간 내에 수행되며, 컴퓨터 프로그램이 가능하고, 프로그래밍 수행 시간이 $3^n$이다.

Optimized finite element model updating method for damage detection using limited sensor information

  • Cheng, L.;Xie, H.C.;Spencer, B.F. Jr.;Giles, R.K.
    • Smart Structures and Systems
    • /
    • 제5권6호
    • /
    • pp.681-697
    • /
    • 2009
  • Limited, noisy data in vibration testing is a hindrance to the development of structural damage detection. This paper presents a method for optimizing sensor placement and performing damage detection using finite element model updating. Sensitivity analysis of the modal flexibility matrix determines the optimal sensor locations for collecting information on structural damage. The optimal sensor locations require the instrumentation of only a limited number of degrees of freedom. Using noisy modal data from only these limited sensor locations, a method based on model updating and changes in the flexibility matrix successfully determines the location and severity of the imposed damage in numerical simulations. In addition, a steel cantilever beam experiment performed in the laboratory that considered the effects of model error and noise tested the validity of the method. The results show that the proposed approach effectively and robustly detects structural damage using limited, optimal sensor information.

혼동행렬의 상관계수를 이용한 최적분류점 (Optimal threshold using the correlation coefficient for the confusion matrix)

  • 홍종선;오세현;최예원
    • 응용통계연구
    • /
    • 제35권1호
    • /
    • pp.77-91
    • /
    • 2022
  • 의학통계와 신용평가 분야에서 혼합분포함수를 판별하는 최적분류점 추정하기 위하여 판별력을 측정하는 다양한 정확도 측도들이 존재한다. 최근에 혼동행렬 빈도수로 표현되는 Matthews의 상관계수와 정밀도와 재현율의 조화평균인 F1 통계량의 정확도 측도들이 최적분류점을 추정하는데 연구되었다. 본 연구에서는 이런 정확도 측도들 중에서 표본크기에 의존하는 정확도 측도들은 두 표본크기 차이가 많은 경우에 최적분류점을 설정하는데 적절하지 않음을 발견한다. 그리고 대안적인 정확도 측도로 혼동행렬의 비율들의 함수인 상관계수를 정의하고, 이를 최대화하는 분류점을 최적분류점으로 추정하는 방법을 제안하고 이 방법의 유용성과 활용성에 대하여 토론한다.

2휠 구동 모바일 로봇의 정밀 위치제어 (A Precise Position Control of Mobile Robot with Two Wheels)

  • 정양근;백승학
    • 한국산업융합학회 논문집
    • /
    • 제18권2호
    • /
    • pp.67-74
    • /
    • 2015
  • Two-wheeled driying mobild robots are precise controlled in terms of linear contol methods without considering the nonlinear dynamical characteristics. However, in the high maneuvering situations such as fast turn and abrupt start and stop, such neglected terms become dominant and heavy influence the overall driving performance. This study describes the nonlinear optimal control method to take advantage of the exact nonlinear dynamics of the balancing robot. Simulation results indicate that the optimal control outperforms in the respect of transient performance and required wheel torques. A design example is suggested for the state matrix that provides design flexibility in the control. It is shown that a well-planned state matrix by reflecting the physics of a balancing robot greatly conrtibutes to the driving performance and stability.