• Title/Summary/Keyword: Optimal manufacturing conditions

Search Result 466, Processing Time 0.032 seconds

A Study on the Optimal Machining of 12 inch Wafer Polishing by Taguchi Method (다구찌 방법에 의한 12인치 웨이퍼 폴리싱의 가공특성에 관한 연구)

  • Choi, Woong-Kirl;Choi, Seung-Gun;Shin, Hyun-Jung;Lee, Eun-Sang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.48-54
    • /
    • 2012
  • In recent years, developments in the semiconductor and electronic industries have brought a rapid increase in the use of large size silicon. However, for many companies, it is hard to produce 400mm or 450mm wafers, because of excesive funds for exchange the equipments. Therefore, it is necessary to investigate 300mm wafer to obtain a better efficiency and a good property rate. Polishing is one of the important methods in manufacturing of Si wafers and in thinning of completed device wafers. This research investigated the surface characteristics that apply variable machining conditions and Taguchi Method was used to obtain more flexible and optimal condition. In this study, the machining conditions have head speed, oscillation speed and polishing time. By using optimum condition, it achieves a ultra precision mirror like surface.

Optimization of the Manufacturing of Process Butter by Response Surface Methodology and Its Texture and Rheological Properties (반응표면분석법에 의한 가공버터 제조의 최적화 및 Rheology 분석)

  • Suh, Mun-Hui;Yoon, Kyeong;Baick, Seung-Chun
    • Journal of Dairy Science and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.51-56
    • /
    • 2008
  • Using central composite design, we have designed optimization of the manufacturing of processed butter. And response surface analysis by least-square regression was used Statistical Analysis System(SAS). Central composite design can be achieved by response surface techniques that allow flexibility in modeling and analysis. Response surface methodology(RSM) was used to optimize hardness(%) using as independent variables; the content of butter($X_1$), ranging from 50 to 90(%), the content of soybean oil($X_2$), from 0 to 20(%), and the hydrogenated soybean oil($X_3$) from 0 to 4(%). The results on the regression coefficients calculated for overrun by response surface by least-square regression(RSREG) were followed. It was considered that the linear regression was significant(p<0.01). As for the processed butter, the regression model equation for the hardness(Y, %) to the change of an independent variable could be predicted as follow: $Y=60.88-8.92X_2-{29.3X_2}^2$. The optimal for the manufacturing of processed butter were determined at the content of butter of 88.22%, soybean oil of 6.71% and hydrogenated soybean oil of 2.36%, respectively. Optimum compositions were resulted in hardness of 65.78 N. Finally the reference sample(Butter in the morning, Seoul Dairy Co-op.) and processed butter manufacturing under the optimal conditions were compared with spreadability test. The spreadability scores result from reference sample and butter under optimal conditions was not found a significant difference.

  • PDF

A Study on the Development of Cooling Simulation Program for Thermal Environmental Chamber (열환경챔버의 냉방 시뮬레이션 프로그램 개발에 관한 연구)

  • 이한홍
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.5
    • /
    • pp.108-114
    • /
    • 1999
  • The thermal environmental chamber has been using in maintaining weather condition keeping thermal capacity under heating and cooling load fluctuation and for the performance testing of cooling system or air-conditioner on artificial envi-ronment. In ordder to make the various environmental conditions in the thermal environmental chamber the proper cooling system is necessary to eliminate the heating load produced inside the chamber and to maintain the designed environmental condition. For this reason the optimal design of cooling system and the prediction of performance is also required. This paper describes the prediction of performance of cooling system in the thermal environmental chamber with the capacity of 37,000kcal/hr which is developed for the test of performance in heating mode of heat pump system, In the results this paper is trying to develop simulation program on the base of mathematical models and which can be applied effectively to the optimal design of cooling system and prediction of performance to the inside and outside change of envi-ronmetal load.

  • PDF

A Study about Character of Tool Wear and Chip on The Face Milling Cutter to Minimize Resultant Cutting Force (최소 절삭력형 밀링커터의 가공에서 공구마멸 및 칩의 특성에 관한 연구)

  • 김희술
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.72-79
    • /
    • 2000
  • A new optimal tool design model which can be minimized the resultant cutting forces under the constrains of variables was developed. The resultant cutting forces are used as the objective function and tool angles are used as the variables. Cutting experiments of tool wear and chip length using the new and conventional tools wee carried out. Tool life of optimized cutter are more increased than those of conventional cutter by 2.29 times and 2.52 times at light and at heavy cutting conditions respectively. Chip length of optimized cutter are more increased than those of conventional cutter It is considered that the decrease of the resultant cutting forces is the cause that an effective rake and shear angles by the shape of optimal cutter.

  • PDF

Study on Relation between Surface Roughness and Heat Absorption Capability of Materials for Solar Collector (태양열 집열기용 소재의 표면 거칠기와 흡열성능의 관계 연구)

  • Chun, Tae-Kyu;Ahn, Young-Chull
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.76-85
    • /
    • 2013
  • This study was carried out to investigate the relation between surface roughness and heat absorption capability of materials for solar collector. For this purpose, 3 kinds of materials (copper, aluminum, iron), 5 kinds of surface roughness (scrubber, alumina sand #80, #200, #400, glass bead) and 2 kinds of surface treatment (black chrome plating, copper black coating) were used for finding optimal conditions to apply solar collector. As the results, it was confirmed that the optimal relations between surface roughness and surface treatment as well as optimal materials were necessary. Further, heat absorption capability was showed good results in cases of copper materials, glass bead and black chrome plating.

Approximate Multi-Objective Optimization of Bike Frame Considering Normal Load (수직하중을 고려한 자전거 프레임의 다중목적 최적설계)

  • Chae, Yunsik;Lee, Jongsoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.211-216
    • /
    • 2015
  • Recently, because of the growth in the leisure industry and interest in health, the demand for bicycles has increased. In this research, considering the vertical load on a bike frame under static state conditions, the deflection and mass of the bike frame were minimized by satisfying the service condition and performing optimization. The thickness of the bicycle-frame tube was set to a design variable, and its sensitivity was confirmed by an analysis of means (ANOM). To optimize the solution, a response-surface-method (RSM) model was constructed using D-Optimal and central composite design(CCD). The optimization was performed using a non-dominant sorting genetic algorithm (NSGA-II), and the optimal solution was verified by finite-element analysis.

Finite Element Analysis of Precision Cold Forging Process to Improve Material Utilization for Injector Housing (재료이용률 향상을 위한 인젝터 하우징의 정밀냉간단조공정 유한요소해석)

  • Kim, H.M.;Park, Y.B.;Park, S.Y.
    • Transactions of Materials Processing
    • /
    • v.20 no.4
    • /
    • pp.291-295
    • /
    • 2011
  • The injector housing has two functions, namely, positioning the injector and protecting it from coolant. The conventional manufacturing process of the injector housing by machining has some drawbacks such as considerable loss of material and environmental pollution caused by excessive use of cutting oil. In this paper, precision cold forging is proposed as a new manufacturing process in order to improve these issues. A numerical study was conducted to compute the metal flow, strain, load and other process variables using DEFORM-2D, a finite element analysis(FEA) code for metal forming. Two process methods were investigated and optimal conditions were computed with the FEA code. A prototype was manufactured from the optimal process method and the metal flow and hardness were obtained from the prototype.

Minimization of Warpage in Injection-molded Parts By Optimal Design of U-type Ribs (U자형 리브의 최적설계에 의한 사출제품의 휨 최소화)

  • Park, Jong-Cheon;Kim, Kwang-Ho;Kim, Kyung-Mo;Koo, Bon-Heung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.1
    • /
    • pp.53-61
    • /
    • 2008
  • In this research, the layout and geometry of U-type ribs in the part, including significant process conditions, are automatically optimized to reduce part warpage with robustness in consideration. The optimization procedure are based on an iterative redesign methodology integrated with computer aided injection molding simulation, Taguchi's Design of Experiment(DOE), and a direct search-based optimization method. The robustness of a design alternative is efficiently measured by introducing composite noise factor and Taguchi's signal-to-noise ratio. As a solution search methodology, the modified design space reduction method based on orthogonal arrays is employed to exploit an optimal robust design alternative. To illustrate the proposed methodology, a case study is performed on simulation results, where an optimal robust design alternative is obtained with a moderate number of iterations.

  • PDF

Development of Expert System for Optimal Condition of Automatic Die Polishing (자동금형연마의 최적조건선정 전문가시스템 개발)

  • Lee, Doo-Chan;Jeong, Hae-Do;Ahn, Jung-Hwan;Miyoshi, Takashi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.58-67
    • /
    • 1997
  • Generally, die polishing process occupies about 30 .approx. 50% of the whole die manufacturing time. However, die polshing has not been automated yet, since it needs a great deal of experience and skill. This study aims at development of an expert system for die polishing which gives such optimal parameters as tool and polishing conditions. Through experiments, polishing characteristics such as surface roughness, stock removal and scratch were analyzed quantitatively for each polishing tool, and a knowledge base for the expert system was established. Evaluation tests show that the developed system works well to suggest the optimal polishing conditions and it is very promising.

  • PDF

Study on Optimal Welding Conditions for Underframe of Railway Vehicles (철도차량 하부구조의 적정 용접조건에 관한 연구)

  • Jung, Sang-Ho;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.1-7
    • /
    • 2021
  • In this study, MIG welding was performed on extruded 6005A-T6 material, which is used in the base panel of railway vehicles. The material was considered as the experimental base material, and argon shielding gas and ER5356 and ER4043 filler metals were used as the consumable welding materials. Welding coupons were prepared under various welding conditions by using an auto-welding system that various welding conditions applied 2.5Hz and 4.5Hz the pulse frequency of SynchroPuls function of welding machine and 1.0mm and 1.5mm of root face affect the weld penetration of welding joint. The welding current and voltage were also varied for this testing. On the basis of the results obtained, optimum welding conditions are proposed.