• Title/Summary/Keyword: Optimal manufacturing conditions

Search Result 466, Processing Time 0.031 seconds

Design Parameter Analysis of a Dynamic Absorber for the Control of Machine Body Vibration (기계 진동의 수동적 제어를 위한 동흡진기 설계인자 해석)

  • Kim, Giman;Choi, Seongdae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • The optimal design parameters of a dynamic absorber (DA) in a machine body (that is considered as a rigid body) are discussed in this paper. The bounce and rotation motions of the rigid body have been controlled passively by a DA, which consists of a mass and a spring. The rigid body is subjected to a harmonically excited force and supported by linear springs at both ends. To define the motion of a rigid body with a DA, the equation of motion was expressed in the third-order matrix form. To define the optimal design conditions of a DA, the reduction of dynamic characteristics, represented by the amplitudes of bounce and rotation, and the transmitted powers, were evaluated and discussed. The level of reduction was found to be highly dependent on the location and spring stiffness of the DA.

Analysis of Optimal Dynamic Absorbing System considering Human Behavior induced by Transmitted Force

  • Kim, Hyo-Jun;Choe, Eui-Jung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.6
    • /
    • pp.38-43
    • /
    • 2003
  • In this study, the optimal dynamic absorbing system for the gas operated HIF (high implusive force) device has been investigated. For this purpose, firstly, the dynamic behavior of human body induced by impulsive disturbances has been analyzed through a series of experimental works using the devised test setup. The characteristics of linear impulse has been compared under some conditions of support system. In order to design the optimal dynamic absorbing system, the parameter optimization process has been performed based on the simplified isolation system model under constraints of moving displacement and transmitted force. Finally, the performance of the designed dynamic absorbing system has been evaluated by simulation in the actual operating condition.

In-Plane Deformation Analysis and Design of Experiments Approach for Injection Molding of Light Guide Plate for LCDs

  • Lee Ho-Sang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.51-56
    • /
    • 2006
  • A computer code was developed to simulate both the thermal stresses introduced during the post-filling stage and the in-plane deformation after ejection process by finite element method based on the plane stress theory. The computer simulation was applied to the mold design of a 2 inch light guide plate (LGP) for thin film transistor (TFT)-liquid crystal displays (LCD). With injection molding experiments based on the design of experiments (DOE) technique, the influences of the processing conditions in injection molding on brightness and uniformity of the LGP were investigated, and the optimal processing parameters were selected to increase the brightness and uniformity. The verification experiment showed that the brightness and uniformity of the LGP were increased dramatically under the selected optimal processing conditions.

A Study on the Development of Nonwoven Abrasive Pads and Charateristics of Electrolytic Machining (점탄성연마재 개발 및 전해가공특성에 관한 연구)

  • 김정두
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.190-195
    • /
    • 1997
  • The requirement of precision products about difficult-to-cut materials such as Cu and Aluminum alloy is becoming more and more. Because of soft materials, the exist narrow groves on surface are difficult to gotten off even on the polishing stage. It has been proved that Magnetic-Electrolytic-Abrasive Polishing (MEAP) is a efficient method to resolve this problem by using the nonwoven-abrasive pads together [1, 2]. In this study, through the experiments, their machining properties of newly developer polishing material of SiC, Al2O3 and diamond nonwoven abrasive pads have been proved. Through the experiments, the optimal machining conditions on larger cylinder shape workpiece of Cu and Aluminium alloy have been found, through the Taguchi[3] method the optimal machining conditions can be selected.

  • PDF

Geometric Error Analysis of Surface Grinding by Design of Experiments (실험계획법을 이용한 연삭가공물의 형상오차 분석)

  • 지용주;곽재섭;하만경
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.1-8
    • /
    • 2004
  • Various controllable parameters of an experiment have influence on grinding process. In order to get good products with a high quality, these parameters should be considered whether each parameter has relations to the quality. This paper describes the use of the design of experiments to minimize geometric error in surface grinding. Controllable parameters for the design of experiments were selected as spindle speed, table speed, depth of cut and grain size. From the experimental results, a degree of influence between these parameters and the geometric error was evaluated. An optimal set of grinding conditions was obtained by means of analysis of variance(ANOVA).

Polishing Robot Attached to a Machining Center for a Freely-Curved Surface Die

  • Lee, Min-Cheol;Go, Seok-Jo;Cho, Young-Gil;Lee, Man-Hyung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.43-53
    • /
    • 2002
  • Polishing a die that has free-form surfaces is a time-consuming and tedious job, and requires a considerable amount of high-precision skill. In order to reduce the polishing time and cope with the shortage of skilled workers, a user-friendly automatic polishing system was developed. The polishing system is composed of two subsystems, a three-axis machining center and a two-axis polishing robot. The system has five degrees of freedom and is able to keep the polishing tool in a position normal to the die surface during operation. A sliding mode control algorithm with velocity compensation was proposed to reduce tracking errors. Trajectory tracking experiments showed that the tracking error can be reduced prominently by the proposed sliding mode control compared to a PD (proportional derivative) control. To evaluate the polishing performance of the polishing system and to and the optimal polishing conditions, the polishing experiments were conducted.

OPTIMIZATION OF WELDING PARAMETERS FOR RESISTANCE SPOT WELDING OF TRIP STEEL USING RESPONSE SURFACE METHODOLOGY

  • Park, Hyunsung;Kim, Taehyung;Sehun Rhee
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.366-371
    • /
    • 2002
  • Because of the environmental problems, automotive companies are trying to reduce the weight of car body. Therefore, TRIP(TRansformation Induced Plasticity) steels, which have high strength and ductility have been developed. Welding process is a complex process; therefore deciding the optimal welding conditions on the basis of experimental data is an effective method. However, trial-and-error method to decide the optimal conditions requires too many experiments. To overcome these problems, response surface methodology was used. Response surface methodology is a collection of mathematical and statistical techniques that are used in the modeling and analysis of problems in which a response of interest is influenced by several variables and the objective is to optimize this response. This method was applied to the resistance spot welding process of the TRIP steel to optimize the welding parameters.

  • PDF

Surface Roughness Analsis of Surface Grinding by Design of Experiments (실험계획법을 이용한 연삭가공물의 표면거칠기 분석)

  • 지용주;이상진;박후명;곽재섭;하만경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.54-59
    • /
    • 2004
  • A measure for good products manufactured by grinding process is the surface roughness that is affected by a lot of operating parameters such as types of abrasive, grain size, bond material, wheel speed, table speed, depth of cut, hardness of workpiece and stiffness of grinding machine. In this study, an application of the design of experiments was tried for evaluating the effect of operating parameters on the surface roughness. The workpiece was a high speed tool steel(SKH51) and the surface grinding was conducted. In order to obtain the best surface roughness within constraints of the working range, the optimal grinding conditions were selected. The usefulness of this method was evaluated by the statistical strategy.

  • PDF

Effects of the Grinding Conditions on the Shape of Center Ground Parts

  • Kim, Kang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.3
    • /
    • pp.55-61
    • /
    • 2003
  • The form accuracy of parts has become an important parameter. Therefore, not only dimensional tolerance but also geometric tolerances are used in the design stage to satisfy the required quality and functions of parts. But the information on the machining conditions, which can satisfy the assigned geometric tolerance in do sign, is insufficient. The objectives of this research are to study the effects of the grinding parameters such as traverse speed, work speed, depth of cut, and dwell time on the after-ground workpiece shape, and to find out the major parameters among them The results are as follows; The effects of work speed and depth of cut on the workpiece shape are negligible compared with the effect of traverse speed. These is an optimal dwell time depending on the traverse speed. The optimal dwell time is decreasing as the traverse speed is increasing.

Determination of Optimal Excimer Laser Ablation Conditions Using Genetic Algorithm (유전자 알고리즘을 이용한 엑시머 레이저가공의 최적조건 선정)

  • 배창현;최경현;이석희
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.17-23
    • /
    • 2002
  • A new 3D micromachining method called Hole Area Modulation(HAM), has been introduced to enhance the current micromachining technology. In this method, information on the depth of machining is converted to the sizes of small holes in the mask. The machining is carried out with a simple 2D movement of the workpiece. This method can be applied for machining various kinds of microcavities in various materials. In this paper, a machematical model for excimer laser micromachining based on HAM and also determination of optimal laser ablation conditions(width hole radius, step size, path, etc.) is performed by Genetic Algorithm(GA).