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1. Introduction

  In the industrial fields, lots of machines and 

structures had experienced the troubles caused by 

vibration and unbalance phenomena. Numerous 

studies have been done to control the vibrations of 

the machines in operation in the past decades. 

  Currently it is known well that the fast and the 

accurate motions in the machining duration becomes 

one of the common trends  the optimal design. In 

the high speed operation, the vibration which may 

occurs at each parts of machine should be 

controlled actively or passively for the stability of 

the machine structure.

The vibration problems of machines and structures 

had been studied by lots of researchers. The 

vibration energy flow and the dynamic response of 
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a beam, plate or some compound system have been 

analyzed. By using a model of an elastic beam, the 

vibrational intensity and control skills had been 

presented[1-4]. The structure analysis and the control 

of the vibrations of the machine tools had been 

introduced [5-10].

It is known that a body or part of machinery or 

robots in the industrial fields experience a few types 

of dynamic response being induced by a bouncing 

movement, a rotation and/or the constant reciprocal 

motions. So to control the above mentioned 

responses, the dynamic absorber is simply applied to 

the machine. The Dynamic Absorber (DA)[11] is 

known to be effective over narrow band of 

frequencies and is designed to make the natural 

frequencies of the main system be away from the 

forcing frequency. Hence in this study a machine 

which is subjected to a harmonically excited force 

is modelled theoretically as a rigid body in a two 

dimension and employed to be controlled passively 

by a Dynamic Absorber which consists of a mass 

and a spring. Two supports of a body are 

considered as linear springs having only the elastic 

property. Based on the equation of motion, two 

motions (bounce and rotation about the center of 

gravity (CG)) of a rigid body will be discussed. 

To define the optimal design parameters of a DA, 

the cost function which is the ratio of the dynamic 

characteristics of a body without DA to that of a 

body with DA will be evaluated and discussed. Fig. 

1 shows the theoretical model of a rigid body 

which is subjected to a harmonically excited force 

F(t) and has a Dynamic Absorber (DA) which is 

located at La being distanced from the center of 

gravity (CG). 

2. The Governing Equations

The governing equations for the motions of a rigid 

body which has a dynamic absorber(DA), can be 

written in matrix form as:
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where x and θ mean the bouncing and rotating 

displacements of a rigid body, respectively and y is 

the displacement of a Dynamic Absorber(DA), JG is 

a mass moment of inertia of a rigid body. The 

elements of a matrix are given as

         

        

  ∓  

  





          (2)

In the above equations, the displacements of a 

rigid body and a DA are expressed into the 

amplitude of a spatial function and the time 

harmonic function. Then by suppressing the time 

term in Eq. (1), it can be rearranged in terms of 

amplitudes as,
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Fig. 1: A rigid body with two supports F(t) 
(the external force), Dynamic Absorber (DA), 
Distances based on the center of gravity (CG) 
[L1(to the left support), L2(to the right 
support), Xa(to the a DA), Lf(to the external 
force)] Mass items [m(a rigid body), ma(DA)] 
Stiffness items [k1(a left side), k2(a right 
side), ka(DA)]
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where            

          


  ∓  

  



 

  Here the amplitudes can be obtained by multiplying 

both sides of Eq.(3) by [Z]-1 which is the inverse of 

a third-order matrix [Z] in Eq.(3). Finally the 

amplitudes become as follows,

 ∆

  

 ∆

  

 ∆

  

    (4)

where ‘ ’ represents the determinant of a third-order Δ

matrix [Z] and is expressed as 

∆    

 

  The determinant will be used for determining the 

resonant frequencies to control the vibration of a 

rigid body. All values obtained in this study have 

been expressed into the dimensionless forms which 

are based on a certain quantity. The dimensionless 

mass (ma) of a DA which is divided by a mass of 

rigid body (m) is given as 0.1 ~ 0.3 and the mass 

moment of inertia (JG) is kept a constant as 0.1 

based on the quantity of mL2. 

The center of a gravity (CG) of a lot machines are 

observed to deviate away from a geometric center of 

a body. So the dimensionless lengths (L1, L2) of both 

supports from CG are given as 0.4 and 0.6, 

respectively.  In Table 1, the dimensionless properties 

and the base quantity are introduced as

Table 1 Dimensionless properties 

3. Resonant frequency coefficients ( )α

In Eq.(4), the denominator part vanishes for 

certain specific values of the frequency ratio(a). The 

roots of denominator which are expressed in a are 

called the resonance frequency coefficient for the 

rigid body with a DA. For three mass ratios (ma = 

0.1, 0.2 and 0.3) of a DA stiffness ratio (ka=0.1), 

the variations of three resonance frequency 

coefficients (a1, a2, a3)  versus location of a DA 

(Xa) are plotted in Fig. 2 (a), (b) and (c), 

respectively. Based on the CG, the left direction is 

marked negative sign (0 ~ -0.4) and the positive 

sign (0 ~ 0.6) is given for the right direction. As 

the mass is increasing, the values of the coefficients 

are getting higher. But the differences of the value 

is getting smaller as be higher the order of the 

coefficient. It is confirmed that as the total mass is 

increasing, is getting lower the value of the resonant 

frequencies.

In Fig. 2 (a), (b) and (c),  the variations of the 

three frequency coefficients are plotted versus the 

location of a DA for three stiffness ratios (ka = 

0.1, 0.3 and 0.5) of a mass ratio (ma=0.2), 

respectively. It is noted that the higher stiffness 

produces the higher coefficient. The variation of 

each coefficient along the length of a body is found 

to show the similar trend for the same order of 

coefficient. 

Items Expression forms Base quantity

masses m, ma,(0.1~0.3) m

Inertia JG (= 0.1) mL2

force f (= 1) kL

Lengths X, Y, L1, L2, Xa, Lf L=L1+L2= 1

stiffness k1, k2, ka k=k1+k2= 1

frequency α ωn=(k/m)1/2
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(a) a1

(b) a2

(c) a3

Fig. 1 Resonant frequency coefficients s Xa

ka=0.1; L1=0.4; L2=0.6;  JG=0.1; k1=0.5; k2=0.5 

solid [ma=0.1], dot [ma=0.2], dash-dot [ma=0.3]

  

                      (a) a

(b) a2

(c) a3

Fig. 2 Resonant frequency coefficients vs Xa

ma=0.2; L1=0.4; L2=0.6; J=0.1; k1=0.5; k2=0.5 

solid [ka=0.1], dot [ka=0.3], dash-dot [ka=0.5]
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4. Control of Dynamic Characteristics

4.1 Reduction of amplitudes

In order to control passively the dynamic responses 

of a rigid body, In Eq. (4), two amplitudes for the 

bounce (X) and the rotation ( ) are employed for the Θ

responses of a rigid body. The reduction level of the 

dynamic response (RD) is evaluated in comparison 

with two cases - a response without DA and a 

response with DA. The given external force ratio (f) 

is set to be a unity and the forcing frequency (af) is 

randomly entered. The ratio of a response without 

DA to one with DA is expressed in terms of decibel 

[dB] as follows;

   

   
       (5)

       (a) bouncing amplitude

       (b) rotating amplitude

Fig. 3 Reduction of amplitude (RD) vs ka

ma=0.2; af = 2; Lf=0.1; J=0.1; thick solid[Xa=-0.1], 

thin solid[Xa=0.1], dot[Xa= 0.0]

In Fig.3, the reduction of two amplitudes (bounce 

and rotation) for ma = 0.2 and af = 2, are plotted 

along the DA stiffness ratio (ka) for three locations 

of a DA - Xa = -0.1 (the left side from CG), Xa = 

0.0 (positioned at CG) and Xa = 1.0 (positioned at 

the location of the external force (Lf)). 

In case of bouncing motion, the huge reduction is 

observed near or at the value of ka = 0.8 for three 

locations and otherwise the reduction is found to be 

small or worse. 

       (a) bouncing amplitude

       (b) rotating amplitude

Fig. 4 Reduction of amplitude (RD) vs a

ma= 0.2; Xa = Lf = 0.1; J=0.1; thick solid

[ka= 0.5k optimal], thin solid[ka= koptimal], dot[ka= 

2koptimal]
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The large reduction of rotating case occurs at the 

value of ka = 0.8 only for the case of Xa = 0.1 

which is the same place of the external force. Here 

the value of ka = 0.8 matches the optimal stiffness 

of a DA being reported previously[11] such that the 

natural frequency of DA should be set equal to the 

forcing frequency of a main system. So the optimal 

value of the stiffness ratio (ka) can be given as;

     ≅ ×
      (6)

In Fig.4, the value of ka being estimated by Eq. (6) 

gives the large reduction level compared to those of 

other values of ka. It is proved that the optimal 

value of ka in Eq. (6) is still effective to control two 

motions of a rigid body (bounce and rotation). 

4.2 Reduction of transmitted power 

The Vibrational energy which is induced by the 

harmonic motion of the external force is known to 

transmit to the main and the neighbour systems. In 

practice, a lot machines and frames are known to 

be troubled by excessive energy which is transmitted 

to the machine body and to the surrounding parts. 

Hence power which is the energy rated by time is 

evaluated and is expressed as follows;

  

  

  

               (7)

where P[m], P[L] and P[R] represent the power 

be transmitted to a rigid body, to the left support 

and to the right support, respectively. The reduction 

level of power (RP) is expressed in terms of 

decibel [dB] as;

   

                 (8)

    (a) a rigid body

  

        (b) a left support

  

       (c) a right support

Fig. 5 Reduction of power (RP) vs a ma= 0.2; 

Lf=0.1; J=0.1; ka = Eq. (6) thick solid[Xa=-0.1], 

thin solid[Xa=0.1], dot[Xa= 0.2]
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Fig. 6 Reduction of power to a body vs La

ma= 0.2; af = 2; J=0.1; ka = Eq.(6)

thick solid[Lf=-0.1], thin solid[Lf=0.1], dot[Lf= 0.3]

For three parts of a system (a rigid body, a left 

and right supports), Fig.5 shows the reductions of 

the transmitted power (RP) of three DA locations 

(Xa= -0.1, 0.1 and 0.2) versus the forcing frequency 

coefficient a  for the optimal value of a DA 

stiffness ratio (ka=Eq. (6)). As shown in Fig.5, 

reduction level of the location of Xa = 0.1 is 

exclusively high compared to other locations. In 

Fig.6, the reductions of the transmitted power of a 

rigid body for three cases of a force location (Lf= 

-0.1, 0.1 and 0.3) are plotted against the location of 

a DA (Xa).  It is observed that the powers be 

reduced largely near the same location of a DA and 

a external force. It is surely noted that the optimal 

location of a DA be near or at the place of an 

external force. 

5. Conclusion

In this paper, the passive control of a vibrating 

machine with a Dynamic Absorber is studied to 

determine the optimal design parameters of a DA. On 

the bases of the analyses in this study, the 

conclusions are obtained as follows,

1) A Dynamic Absorber is observed to have the 

satisfactory results for the reduction of the dynamic 

characteristics, which are the dynamic responses and 

the power be transmitted to a rigid body and two 

supports. 

2) The location of a DA should be positioned near 

or at the place of a external force for the control 

of two motions of a rigid body - bounce and 

rotation.

3) The variation of a mass of a DA might be a 

helpful tool to avoid the resonant phenomena by 

changing the range of the natural frequencies.

4) It is proved that the optimal stiffness of a DA 

which is determined by Eq. (6) is still conservative 

as the design parameter of a DA.
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