• 제목/요약/키워드: Optimal generator maintenance scheduling

검색결과 17건 처리시간 0.025초

퍼지다목적함수를 이용한 발전기보수유지계획의 수립 (The Generator Maintenance Scheduling using Fuzzy Multi-criteria)

  • 최재석;도대호;이태인
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1995년도 추계학술대회 학술발표 논문집
    • /
    • pp.131-138
    • /
    • 1995
  • A new technique using integer programming based on fuzzy multi-criteria function is proposed for generator maintenance scheduling. Minimization maintenance delay cost and maximization reserve power are considered for fuzzy multi-criteria function. To obtain an optimal solution for generator maintenance scheduling under fuzzy environment, fuzzy multi-criteria integer programming is used. In the maintenance scheduling, a characteristic feature of the presented approach is that the crisp constraints with uncertainty can be taken into account by using fuzzy set theory and so more flexible solution can be obtained. The effectiveness of the proposed approach is demonstrated by the simulation results.

  • PDF

발전기 이산 민감도를 이용한 효율적인 우선순위법의 대규모 예방정비계획 문제에의 적용 연구 (An Effective Priority Method Using Generator's Discrete Sensitivity Value for Large-scale Preventive Maintenance Scheduling)

  • 박종배;정만호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권3호
    • /
    • pp.234-240
    • /
    • 1999
  • This paper presents a new approach for large-scale generator maintenance scheduling optimizations. The generator preventive maintenance scheduling problems are typical discrete dynamic n-dimensional vector optimization ones with several inequality constraints. The considered objective function to be minimized a subset of{{{{ { R}^{n } }}}} space is the variance (i.g., second-order momentum) of operating reserve margin to levelize risk or reliability during a year. By its nature of the objective function, the optimal solution can only be obtained by enumerating all combinatorial states of each variable, a task which leads to computational explosion in real-world maintenance scheduling problems. This paper proposes a new priority search mechanism based on each generator's discrete sensitivity value which was analytically developed in this study. Unlike the conventional capacity-based priority search, it can prevent the local optimal trap to some extents since it changes dynamically the search tree in each iteration. The proposed method have been applied to two test systems (i.g., one is a sample system with 10 generators and the other is a real-world lage scale power system with 280 generators), and the results anre compared with those of the conventional capacith-based search method and combinatorial optimization method to show the efficiency and effectiveness of the algorithm.

  • PDF

송전계통을 고려한 계통운용자의 발전기 예방정비계획 알고리즘에 관한 연구 (An Algorithm for Generator Maintenance Scheduling Considering Transmission System)

  • 한석만;신영균;김발호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권7호
    • /
    • pp.352-357
    • /
    • 2005
  • In competitive electricity markets, the System Operator (SO) coordinates the overall maintenance schedules when the collective maintenance schedule reported to 50 by Gencos not satisfy the specified operating criteria, such as system reliability or supply adequacy. This paper presented a method that divides generator maintenance scheduling of the 50 into a master-problem and a sub-problem. Master-problem is schedule coordination and sub-problem is DC-optimal power flow. If sub-problem is infeasible, we use the algorithm of modifying operating criteria of master-problem. And, the 50 should use the open information only, because the information such as cost function of a generator and bidding Price is highly crucial for the strategies of profit maximization.

Flexible Maintenance Scheduling of Generation System by Multi-Probabilistic Reliability Criterion in Korea Power System

  • Park, Jeong-Je;Choi, Jae-Seok;Baek, Ung-Ki;Cha, Jun-Min;Lee, Kwang-Y.
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권1호
    • /
    • pp.8-15
    • /
    • 2010
  • A new technique using a search method which is based on fuzzy multi-criteria function is proposed for GMS(generator maintenance scheduling) in order to consider multi-objective function. Not only minimization of probabilistic production cost but also maximization of system reliability level are considered for fuzzy multi-criteria function. To obtain an optimal solution for generator maintenance scheduling under fuzzy environment, fuzzy multi-criteria relaxation method(fuzzy search method) is used. The practicality and effectiveness of the proposed approach are demonstrated by simulation studies for a real size power system model in Korea in 2010.

비협조 동적게임이론을 이용한 경쟁적 전력시장의 발전기 보수계획 전략 분석 (An Improved Generation Maintenance Strategy Analysis in Competitive Electricity Markets Using Non-Cooperative Dynamic Game Theory)

  • 김진호;박종배;김발호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권9호
    • /
    • pp.542-549
    • /
    • 2003
  • In this paper, a novel approach to generator maintenance scheduling strategy in competitive electricity markets based on non-cooperative dynamic game theory is presented. The main contribution of this study can be considered to develop a game-theoretic framework for analyzing strategic behaviors of generating companies (Gencos) from the standpoints of the generator maintenance-scheduling problem (GMP) game. To obtain the equilibrium solution for the GMP game, the GMP problem is formulated as a dynamic non-cooperative game with complete information. In the proposed game, the players correspond to the profit-maximizing individual Gencos, and the payoff of each player is defined as the profits from the energy market. The optimal maintenance schedule is defined by subgame perfect equilibrium of the game. Numerical results for two-Genco system by both proposed method and conventional one are used to demonstrate that 1) the proposed framework can be successfully applied in analyzing the strategic behaviors of each Genco in changed markets and 2) both methods show considerably different results in terms of market stability or system reliability. The result indicates that generator maintenance scheduling strategy is one of the crucial strategic decision-makings whereby Gencos can maximize their profits in a competitive market environment.

퍼지 정수계회법을 이용한 발전기 보수유지계획 수립 수법의개발 (Development of a Method for the Generator Maintenance Scheduling using Fuzzy Integer Programming)

  • 최재석;도대호
    • 한국지능시스템학회논문지
    • /
    • 제7권5호
    • /
    • pp.77-85
    • /
    • 1997
  • 본 연구에서는 발전기 보수유지계획 수립을 위하여 퍼지 다목적함수를 이용한 새로은 방법을 제시한다. 보수유지 지연비용의 최소화의 발전기 공급예비력의 최대화를 퍼지 다목적함수로 삼았다. 퍼지론적인 환경을 갖는 보수유지계획의 최적점을 구하기 위하여 퍼지 다목적 정수계획법을 이용하였다. 본 연구의 중요 특성은 기존의 불확실성을 갖는 크리스프적인 제약조건을 퍼지제약으로 처리함으로써 보다 유연한 해를 구할 수 있다는 점이다. 모델계통에 대한 사례연구를 통하여 이번에 개발한 수법의 효용성을 보였다.

  • PDF

Optimization of Generator Maintenance Scheduling with Consideration on the Equivalent Operation Hours

  • Han, Sangheon;Kim, Hyoungtae;Lee, Sungwoo;Kim, Wook
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.338-346
    • /
    • 2016
  • In order for the optimal solution of generators’ annual maintenance scheduling to be applicable to the actual power system it is crucial to incorporate the constraints related to the equivalent operation hours (EOHs) in the optimization model. However, most of the existing researches on the optimal maintenance scheduling are based on the assumption that the maintenances are to be performed periodically regardless of the operation hours. It is mainly because the computation time to calculate EOHs increases exponentially as the number of generators becomes larger. In this paper an efficient algorithm based on demand grouping method is proposed to calculate the approximate EOHs in an acceptable computation time. The method to calculate the approximate EOHs is incorporated into the optimization model for the maintenance scheduling with consideration on the EOHs of generators. The proposed method is successfully applied to the actual Korean power system and shows significant improvement when compared to the result of the maintenance scheduling algorithm without consideration on EOHs.

퍼지이론을 이용한 유연한 발전기보수유지계획 수립에 관한 연구 (A Study on the Flexible Generator Maintenance Scheduling using Fuzzy Theory)

  • 김홍식;문승필;최재석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1104-1107
    • /
    • 1999
  • A new technique using search method based on fuzzy multi-criteria function is proposed fur flexible generator maintenance scheduling. Minimization of probabilistic production cost, maximization of system reliability level and air pollution are considered fur fuzzy multi-criteria function. To obtain an optimal solution for generator maintenance scheduling under fuzzy environment fuzzy multi-criteria relaxation method(fuzzy search method) is used. The practicality and effectiveness of the proposed approach are demonstrated by the simulation results of the real size model system of KEPCO-1997 SYSTEM.

  • PDF

발전기 예방정비계획 전산모형 개발 (Development of Generator Maintenance Scheduling Program)

  • 박종배;정윤원;주행로;이명희;신점구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.216-217
    • /
    • 2006
  • This paper presents development of program for generator maintenance scheduling. The maintenance scheduling of generating units is a dynamic discrete combinatorial optimization problem with constraints to determine the optimal maintenance periods of each generating units for a given planning periods. The developed program is designed so as to provide the maintenance schedule satisfying the operating reserve margin levelization and the procurement of proper reliability. In order to verify the effectiveness of the developed program, the numerical study has been performed with the practical data in 2005.

  • PDF

이진 PSO 알고리즘의 발전기 보수계획문제 적용 (An Application of a Binary PSO Algorithm to the Generator Maintenance Scheduling Problem)

  • 박영수;김진호
    • 전기학회논문지
    • /
    • 제56권8호
    • /
    • pp.1382-1389
    • /
    • 2007
  • This paper presents a new approach for solving the problem of maintenance scheduling of generating units using a binary particle swarm optimization (BPSO). In this paper, we find the optimal solution of the maintenance scheduling of generating units within a specific time horizon using a binary particle swarm optimization algorithm, which is the discrete version of a conventional particle swarm optimization. It is shown that the BPSO method proposed in this paper is effective in obtaining feasible solutions in the maintenance scheduling of generating unit. IEEE reliability test systems(1996) including 32-generators are selected as a sample system for the application of the proposed algorithm. From the result, we can conclude that the BPSO can find the optimal solution of the maintenance scheduling of the generating unit with the desirable degree of accuracy and computation time, compared to other heuristic search algorithm such as genetic algorithms. It is also envisaged that BPSO can be easily implemented for similar optimizations and scheduling problems in power system problems to obtain better solutions and improve convergence performance.