• Title/Summary/Keyword: Optimal design weight

Search Result 693, Processing Time 0.04 seconds

Optimal dimension design of a hatch cover for lightening a bulk carrier

  • Um, Tae-Sub;Roh, Myung-Il
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.270-287
    • /
    • 2015
  • According to the increase of the operating cost and material cost of a ship due to the change of international oil price, a demand for the lightening of the ship weight is being made from various parties such as shipping companies, ship owners, and shipyards. To satisfy such demand, many studies for a light ship are being made. As one of them, an optimal design method of an existing hull structure, that is, a method for lightening the ship weight based on the optimization technique was proposed in this study. For this, we selected a hatch cover of a bulk carrier as an optimization target and formulated an optimization problem in order to determine optimal principal dimensions of the hatch cover for lightening the bulk carrier. Some dimensions representing the shape of the hatch cover were selected as design variables and some design considerations related to the maximum stress, maximum deflection, and geometry of the hatch cover were selected as constraints. In addition, the minimization of the weight of the hatch cover was selected as an objective function. To solve this optimization problem, we developed an optimization program based on the Sequential Quadratic Programming (SQP) using C++ programming language. To evaluate the applicability of the developed program, it was applied to a problem for finding optimal principal dimensions of the hatch cover of a deadweight 180,000 ton bulk carrier. The result shows that the developed program can decrease the hatch cover's weight by about 8.5%. Thus, this study will be able to contribute to make energy saving and environment-friendly ship in shipyard.

Optimal Design of the Deep-sea Unmanned Vehicle Frame Design Sensitivity (심해용 무인잠수정 구조의 민감도해석에 의한 최적설계)

  • 이재환;허유정;정태환;이종무
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.3
    • /
    • pp.28-34
    • /
    • 2004
  • This paper presents the results of the structural analysis and optimal design of the ROV to be operated at 6000m depth in the ocean. This will be the first domestic deep-sea ROV operating with an AUV and a launcher equipped with robot arms and the current weight is about 3 ton. initial optimal dimension of the frame is determined based on the stress analysis using FEA code ANSYS and design sensitivity and optimization results. The current design is the initial design and there is a possibility to change the design according to the modification of material, equipments and array of structure.

Modeling of Self Camera Stick and Optimum Design (셀카봉 모델링과 최적설계)

  • YOON, JONGCHAN;JUNG, HEEOUK
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.460-466
    • /
    • 2015
  • The remaining features in this study using the Freecad proceeds according to the overall effect was not supported by the modeling Freecad were conducted a study to complement using the CATIA program or other commercially available. The focus of this study is that there can be obtained the stability through the center of gravity of the balancing of two parts by increasing the weight of the other magnet through a Fortuna other end of the weight of the bar, using the center of gravity. Finally, to find the optimal design of the weight and thickness of the main bar through the center of gravity balancing is the purpose of this study.

  • PDF

Combined Optimal Design of Robust Control System and Structure System for Truss Structure with Collocated Sensors and Actuators

  • Park, Jung-Hyen
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.2
    • /
    • pp.15-21
    • /
    • 2002
  • A control-structure combined optimal design problem is discussed taking a 3-D truss structure as a design object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these farms. We consider not only minimum weight design problem for structure system, but also suppression problem of the effect of disturbances for control system as the purpose of the design. A numerical example shows the validity of combined optimal design of structure and control systems. We also consider the validity of sensor-actuator collocation for control system design in this paper.

An Economic Statistical Design of the EWMA Control Charts with Variable Sampling Interval (VSI EWMA 관리도의 경제적 통계적 설계)

  • 송서일;박현규;정혜진
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.1
    • /
    • pp.92-101
    • /
    • 2004
  • Tris paper present an economic statistical design which have statistically constraints for the optimal design of an EWMA control charts with variable sampling interval. Cost function use that proposed by Lorenzen and Vance, and the optimal design parameters include the sample size, control limit width, sampling interval, EWMA weight value. Comparisons between VSI EWMA control charts optimal economic design and optimal economic statistical designs show the following fact. Although have demerits which are more costly than economic design, have merits which to detect shifts more efficiently and to improve statistical performance.

Optimal Design for Torsional Stiffness of the Tubular Space Frame of a Low-Cost Single Seat Race Car (저가 입문용 1인승 레이스카 Tubular Space Frame의 비틀림 강성 최적설계)

  • Jang, Woongeun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.5955-5962
    • /
    • 2014
  • Generally, the frame design of a vehicle is a critical technology that plays an important role in the racing and high performance sports car market. The high performance of race car frame means that it requires high torsional stiffness because it directly affects the cornering behavior of the race car. The optimal design for the frame of a low-cost single seat race car was carried out using the DOE (Design Of Experiments) with Taguchi's orthogonal array and FEM (Finite Element Method) analysis to secure sufficient torsional stiffness in this paper. According to the results by DOE and FEM analysis, the optimal design case produced improved 10.7% and 14.5% improvement in each stiffness-to-weight ratio and frame weight than in the early design step. Therefore, this paper shows that the optimal design with Taguchi's orthogonal array is very useful and effective for designing a tubular space frame of a low-cost single seat race car in the early design step.

Optimal Design for a Moving aMgnet Type Linear D.C. Motor (가동자석형 선형 직류모터의 최적설계)

  • Son, Dong-Seol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.2
    • /
    • pp.94-98
    • /
    • 1995
  • This paper proposes an optimal design method for the weight and cost of a moving magnet typer linear DC motor (MM-LDM). The optimal design condition such as type and size of MM-LDM were determined by the trinary search algorithm after adjusting a standard function and its related parameters. In order to verigy results of the optimal design by the computer simulation, the designed values such as a thrust, a current, a velocity, and etc. of the fabricated MM-LDM were measured. And the measurement results are in good agreement with the designed ones.

  • PDF

Obtaining Design Characteristics of Lever-linked Roberval Mechanism through Weighing Method (무게측정방식에 따른 Lever-linked Roberval Mechanism의 설계특성)

  • An, Ji Yun;Ahn, Jung Hwan;Lee, Gil Seung;Kim, Hwa Young
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.336-341
    • /
    • 2020
  • The deflection and null balance methods are used for precision force measurement in the precision industry. Since both methods are based on deformation, the performance of the load cell mechanism is important. In this study, the design variables were obtained via the free body diagram of a lever-linked Roberval mechanism (combined with a flexible hinge link and a Roberval mechanism), and the design characteristics were analyzed according to the weight method. Based on the design characteristics, the optimal design was conducted according to the weight method and FEM was used to verify its reliability.