• Title/Summary/Keyword: Optimal Operation

Search Result 2,824, Processing Time 0.032 seconds

Optimal Operation Methods of the Seasonal Solar Borehole Thermal Energy Storage System for Heating of a Greenhouse (온실난방을 위한 태양열 지중 계간축열시스템의 최적 운전 방안)

  • Kim, Wonuk;Kim, Yong-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.28-34
    • /
    • 2019
  • Solar energy is one of the most abundant renewable energy sources on Earth but there are restrictions on the use of solar thermal energy due to the time-discrepancy between the solar-rich season and heating demand. In Europe and Canada, a seasonal solar thermal energy storage (SSTES), which stores the abundant solar heat in the summer and uses the heat for the winter heating load, is used. Recently, SSTES has been introduced in Korea and empirical studies are actively underway. In this study, a $2,000m^2$ flat plate type solar collector and $20,000m^2$ of borehole thermal energy storage (BTES) were studied for a greenhouse in Hwaseong City, which has a heating load of 2,164 GJ/year. To predict the dynamic performance of the system over time, it was simulated using the TRNSYS 18 program, and the solar fraction of the system with the control conditions was investigated. As a result, the solar BTES system proposed in this study showed an average solar fraction of approximately 60% for 5 years when differential temperature control was applied to both collecting solar thermal energy and discharging BTES. The proposed system simplified the configuration and control method of the solar BTES system and secured its performance.

Development of prediction models of chlorine bulk decay coefficient by rechlorination in water distribution network (상수도 공급과정 중 재염소 투입에 따른 잔류염소농도 수체감소계수 예측모델 개발)

  • Jeong, Bobae;Kim, Kibum;Seo, Jeewon;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.1
    • /
    • pp.17-29
    • /
    • 2019
  • This study developed prediction models of chlorine bulk decay coefficient by each condition of water quality, measuring chlorine bulk decay coefficients of the water and water quality by water purification processes. The second-reaction order of chlorine were selected as the optimal reaction order of research area because the decay of chlorine was best represented. Chlorine bulk decay coefficients of the water in conventional processes, advanced processes before rechlorination was respectively $5.9072(mg/L)^{-1}d^{-1}$ and $3.3974(mg/L)^{-1}d^{-1}$, and $1.2522(mg/L)^{-1}d^{-1}$ and $1.1998(mg/L)^{-1}d^{-1}$ after rechlorination. As a result, the reduction of organic material concentration during the retention time has greatly changed the chlorine bulk decay coefficient. All the coefficients of determination were higher than 0.8 in the developed models of the chlorine bulk decay coefficient, considering the drawn chlorine bulk decay coefficient and several parameters of water quality and statistically significant. Thus, it was judged that models that could express the actual values, properly were developed. In the meantime, the chlorine bulk decay coefficient was in proportion to the initial residual chlorine concentration and the concentration of rechlorination; however, it may greatly vary depending on rechlorination. Thus, it is judged that it is necessary to set a plan for the management of residual chlorine concentration after experimentally assessing this change, utilizing the methodology proposed in this study in the actual fields. The prediction models in this study would simulate the reduction of residual chlorine concentration according to the conditions of the operation of water purification plants and the introduction of rechlorination facilities, more reasonably considering water purification process and the time of chlorination. In addition, utilizing the prediction models, the reduction of residual chlorine concentration in the supply areas can be predicted, and it is judged that this can be utilized in setting plans for the management of residual chlorine concentration.

Evaluation on the water supply stability of nakdong river basin based on future scenarios (미래 시나리오 기반 낙동강 유역의 용수공급 안정성 평가)

  • Choi, Si Jung;Kang, Seong Kyu;Lee, Dong-Ryul;Kang, Shin-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1105-1115
    • /
    • 2018
  • In Korea, there are only a few cases that quantitative evaluate the impacts of climate change on water supply. Therefore, to ensure stable water supply in the future, a water resources plan is needed to establish by analyzing the scenarios that take into consideration the various situations in the future. In this study, we analyzed the changes of various situations for the Nakdong River basin, and constructed it for the future scenario. The stability of the water supply was analyzed through the analysis of water supply and demand prospect for each scenario path. We selected the areas expected to experience difficulty in supplying water supply and analyzed the scenarios of future water shortage by region and water sector. Also, the effect of increasing water supply capacity through optimal integrated operation of water supply facilities was analyzed and presented. Analysis of the results shows that there is a difficulty in supplying water due to future climate change experienced in the Nakdong River basin. Therefore it is necessary to prepare various countermeasures in order to mitigate or solve this problem.

Model-Based Design and Enhancement of Operational Procedure for Guided Missile Flight Test System (유도무기 비행시험 시스템을 위한 모델 기반 운용절차의 설계 및 개선)

  • Park, Woong;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.479-488
    • /
    • 2019
  • The flight test operational procedure artifact includes mission planning, execution methods, and safety measures for each step of test progress. As the development of guided missiles has become more advanced and strategic, flight test has become increasingly complex and broadened. Therefore, increased reliability of the flight test operation procedures was required to ensure test safety. Particularly, the design of the flight test operational procedures required verification through M&S to predict and prepare for the uncertainty in a new test. The relevant studies have published the optimal framework development for flight tests and the model-based improvements of flight test processes, but they lacked the specificity to be applied directly to the flight test operational procedures. In addition, the flight test operational procedures, which consist of document bases, have caused problems such as limitations of analysis capabilities, insensitive expressions, and lack of scalability for the behavior and performance analysis of test resources. To improve these problems, this paper proposes how to design operational procedure of guided missile flight test system by applying MBSE(Model-based Systems Engineering). This research has improved reliability by increasing the ability to analyze the behavior and performance of test resources, and increased efficiency with the scalability applicable to multiple flight tests. That can be also used continuously for the guided missile flight tests that will be developed in the future.

Optimal Period by Calculating and Appling Correction Factor based on Setting of Non-Working Days of Construction Projects (건설공사의 작업불능일 기준설정에 의한 보정계수 계산 및 적용을 통한 최적공기 산정)

  • Lee, Pil-Yoon;Lee, Seong-Won;Byun, Yo-Seph;Cho, Choong-Yeun;Lee, Min-jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.669-676
    • /
    • 2018
  • Schedule management in construction work is an important step for determining the construction period. On the other hand, there is a difference between the planned schedule and execution schedule because the estimation and calculation of Non-Working days, in which possible at the design stage is not performed properly. This paper proposes a method for estimating the working days by analyzing characteristics of the major work type and estimating the Non-Working days reflecting the Chuseok and New Year Holidays, which is the closest method to the actual work in the schedule planning. By applying the correction factor of the existing method and the improved method for the same construction in the same site, improved method was reduced by 22 days (9.1%) based on the actual working days. The importance of schedule management was confirmed as an example by comparing the data before and after the application of the standard (plan). These results show that the schedule delays, which are caused by the inconsistency between actual working days calculation that had been practiced conventionally and the working days on the schedule table, can be prevented. In addition, it will help to establish a schedule plan that is closer to reality.

A Study on the Extratropical Cyclones in the North Pacific Ocean during the Winter Season for Safe Navigation of Ships (선박의 안전항해를 위한 겨울철 북태평양의 온대저기압에 관한 연구)

  • Ko, Nan-Young;Seol, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.44 no.6
    • /
    • pp.447-452
    • /
    • 2020
  • Extratropical cyclone in winter season is very important in safe operation of ships because it is a major cause of marine accidents due to its strong power. In this study, we used meteorological data, to analyze extratropical cyclones occurring near the 1st Pacific polar front from December 2019 to February 2020. The analysis results are as follows. During those three months, we recorded 41 extratropical cyclones, 8 of which were remarkably developed. The central pressure of the strongest cyclone was 947hPa. The highest number of cyclones were generated in the East P acific Ocean around J apan (16), followed by the areas around Korea, the East China Sea, and the southern Sea of J apan. The cyclones followed five major tracks with a common northeast pattern. We thus concluded that the optimal route for a ship encountering an extratropical cyclone in the North P acific in winter would be south of the cyclone's center traveling eastbound and north of the center traveling westbound.

Enhancement of combustion efficiency of a air-cooled combustor system with single F.D. Fan Using CFD (전산유체역학을 이용한 단일 송풍기가 적용된 공냉식 연소설비의 효율개선)

  • Kim, Min-Choul;Shon, Byung-Hyun;Lee, Jae-Jeong;Park, Hung-Suck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.460-468
    • /
    • 2021
  • This study investigated the enhanced combustion efficiency of an "air-cooled combustion system" with single F.D. fan, and performed a numerical analysis for the operation and design conditions to increase the combustion efficiency. The combustion efficiency in an actual combustor was compared before and after the structure modification. Numerical analysis for application of a single fan revealed the difficulty of forming a turbulence for circular combustion conditions. This is because the supply ratio of combustion air supplied into 2 flow paths becomes irregular in the combustion furnace due to a change in friction force and pressure in each flow path. Subsequently, two methods of supplying air into the combustion furnace were analyzed numerically to obtain the optimal combustion conditions of an air-cooled combustion system. The first method involved injecting the preheated combustion air after a 180~360 degree rotation from the outer wall, whereas in the second method, the combustion air was injected into the combustion furnace in a tangential direction after primary heat exchange outside the combustion furnace, by applying a rotatable vane structure in the combustion furnace. Results reveal that application of a single F.D. fan to the air injection into a rotatable combustion furnace is desirable for optimization of the combustion conditions for applying a duct structure having a dual cooling wall for the cooling of the outer wall of the combustion furnace, and for maintaining perfect mixing in the combustion furnace. We therefore confirmed enhanced combustion efficiency by comparing the actual combustion efficiency before and after structure modification.

A Study on Optical Design Factors by Artificial Recharge Performance (인공함양 주입성능평가에 의한 설계요소 산정 연구)

  • Won, Kyoung-Sik;Lee, Yeoung-Dong;Shin, Dong-Min;Kim, Byeong-Jun;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.603-615
    • /
    • 2020
  • The design factors of artificial recharge are determined by considering the hydrogeological characteristics of the aquifer. The optimal design factors for artificial recharge were derived after performing the injection tests step by step for each injection type (vertical well, ditch and mixed type), which were built in the test site of the study area. It was analyzed that the difference in the injection effect according to the diameter of the injection well was not large, and the 100 mm well was evaluated as appropriate in consideration of the availability and economy of land use. Since the injection effect was well maintained even in the upper rock, the depth of the injection well was proposed for the alluvial layer and the upper rock layer. On the other hand, in four cases of filter media in the ditch, it was analyzed that the penetration efficiency and the hydraulic interference effect indicated excellent injection performance when a filter medium of 10 to 30 mm diameter was filled in the ditch. In addition, the proper spacing of the injection wells was analyzed as 9~12 m considering the interference efficiency. The interference efficiency attenuation coefficient per 1 m of hole spacing was calculated to be 1.75% in this area. In the future study, the artificial recharge design factors obtained in this stage are applied and verified on site construction and operation. Also it is expected to contribute to securing water in areas where there is always a lack of water.

Analysis of the Characteristics of Reformer for the Application of Hydrogen Fuel Cell Systems to LNG Fueled Ships (LNG 추진선박에 수소 연료전지 시스템 적용을 위한 개질기의 특성 분석)

  • Lee, Yoon-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.135-144
    • /
    • 2021
  • In this study, we investigated the characteristics of the process of hydrogen production using boil-of gas (BOG) generated from an LNG-fueled ship and the application of hydrogen fuel cell systems as auxiliary engines. In this study, the BOG steam reformer process was designed using the UniSim R410 program, and the reformer outlet temperature, pressure, and the fraction and consumption of the product according to the steam/carbon ratio (SCR) were calculated. According to the study, the conversion rate of methane was 100 % when the temperature of the reformer was 890 ℃, and maximum hydrogen production was observed. In addition, the lower the pressure, the higher is the reaction activity. However, higher temperatures have led to a decrease in hydrogen production owing to the preponderance of adverse reactions and increased amounts of water and carbon dioxide. As SCR increased, hydrogen production increased, but the required energy consumption also increased proportionally. Although the hydrogen fraction was the highest when the SCR was 1.8, it was confirmed that the optimal operation range was for SCR to operate at 3 to prevent cocking. In addition, the lower the pressure, the higher is the amount of carbon dioxide generated. Furthermore, 42.5 % of the LNG cold energy based on carbon dioxide generation was required for cooling and liquefaction.

A Study on Collaborative Governance: Focusing on the Cultural Heritage Guardians (문화재지킴이 정책의 협력적 거버넌스 운영 체계 연구)

  • Jang, Youngki
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.1
    • /
    • pp.184-205
    • /
    • 2021
  • Governance is valued as a new concept and principle of social operation and public policy management, and its influence is gradually expanding. Among the various governance theories being put into practice and in case analysis studies, collaborative governance embracing various governance concepts has been found to increase interdependence and responsibility beyond participation and compromise, and create new public values by integrating and utilizing optimal social coordination forms. In the field of cultural assets, governance-related research is also being conducted for the efficiency, sustainability, and scalability of public policy enforcement. This study explored the government's role (promotion, arbitration, and condition creation) in collaborative governance, focusing on the "Cultural Heritage Guardians" to understand how collaborative governance operates in the cultural heritage sector. Regarding governance policies in the cultural asset sector, the cultural asset guardians highlighted the status, role, and characteristics of policies by examining their introduction, development, and implementation. The results of the analysis revealed that private-led, horizontal public-private cooperation, collaborative governance, policy introduction, solidarity, professionalism, resource/knowledge imbalance, cooperation precedence, etc., facilitate increased participation. The government has accordingly proposed measures to establish comprehensive legal stability centered on cooperation; strategic reorganization of dedicated organizations; strengthened, supportive intermediate organizations; and individual and multi-party consultative bodies.