• Title/Summary/Keyword: Optimal Configuration

Search Result 775, Processing Time 0.025 seconds

Optimal Configuration of Redundant Inertial Sensors with Uncertainty (불확실성을 고려한 중복 관성센서의 최적 배치)

  • Shim Duk-Sun;Yang Cheol-Kwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.2
    • /
    • pp.81-86
    • /
    • 2005
  • In this paper we consider an optimal configuration problem for redundant inertial sensors which have uncertainty such as misalignment, scale factor error. The optimal configuration problem is treated from the viewpoint of navigation accuracy. We propose a necessary and sufficient condition for the optimal configuration of redundant sensors with no uncertainty, and a sufficient condition for the optimal configuration of redundant sensors with uncertainty. Finally we propose a condition for the optimal configuration based both navigation performance and FDI(fault detection and isolation).

OPTIMAL FORMATION TRAJECTORY-PLANNING USING PARAMETER OPTIMIZATION TECHNIQUE

  • Lim, Hyung-Chul;Bang, Hyo-Choong;Park, Kwan-Dong;Lee, Woo-Kyoung
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.3
    • /
    • pp.209-220
    • /
    • 2004
  • Some methods have been presented to get optimal formation trajectories in the step of configuration or reconfiguration, which subject to constraints of collision avoidance and final configuration. In this study, a method for optimal formation trajectory-planning is introduced in view of fuel/time minimization using parameter optimization technique which has not been applied to optimal trajectory-planning for satellite formation flying. New constraints of nonlinear equality are derived for final configuration and constraints of nonlinear inequality are used for collision avoidance. The final configuration constraints are that three or more satellites should be placed in an equilateral polygon of the circular horizontal plane orbit. Several examples are given to get optimal trajectories based on the parameter optimization problem which subjects to constraints of collision avoidance and final configuration. They show that the introduced method for trajectory-planning is well suited to trajectory design problems of formation flying missions.

Trajectory Planning of Satellite Formation Flying using Nonlinear Programming and Collocation

  • Lim, Hyung-Chu;Bang, Hyo-Choong
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.361-374
    • /
    • 2008
  • Recently, satellite formation flying has been a topic of significant research interest in aerospace society because it provides potential benefits compared to a large spacecraft. Some techniques have been proposed to design optimal formation trajectories minimizing fuel consumption in the process of formation configuration or reconfiguration. In this study, a method is introduced to build fuel-optimal trajectories minimizing a cost function that combines the total fuel consumption of all satellites and assignment of fuel consumption rate for each satellite. This approach is based on collocation and nonlinear programming to solve constraints for collision avoidance and the final configuration. New constraints of nonlinear equality or inequality are derived for final configuration, and nonlinear inequality constraints are established for collision avoidance. The final configuration constraints are that three or more satellites should form a projected circular orbit and make an equilateral polygon in the horizontal plane. Example scenarios, including these constraints and the cost function, are simulated by the method to generate optimal trajectories for the formation configuration and reconfiguration of multiple satellites.

The Optimal Microgrid Configuration Depending on the Change of Average Wind Speed and Fuel Cost (평균풍속 및 유가변동에 따른 최적 마이크로그리드 구성)

  • Kim, Kyu-Ho;Lim, Sung-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.35-40
    • /
    • 2015
  • This paper presents the optimal network configuration for electric stations using HOMER software. For the given data such as annual average wind speed and grid costs, this software calculates the NPC(Net Present Cost), operating cost and COE(Cost of Energy). Based on these simulation results, it is possible to find the optimal network configuration for electric stations depending on the grid cost and average wind speed. When the rising grid cost is considered, it is essential to use grid and renewable energy together. Depending on the increase of the grid cost, NPC of the configuration using renewable energy and grid can be gradually getting smaller than NPC of the configuration using only grid.

Optimal Configuration of SVC for Satellite Broadcasting Service with Ku/Ka Bands

  • Luong, Ngoc Thuy Dung;Sohn, Won
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.188-191
    • /
    • 2010
  • The study investigated the optimal configuration of SVC (Scalable Video Coding) to apply to the satellite broadcasting service, and compared the performance of the SVC with that of the AVC (Advanced Video Coding). To get the optimal configuration, we analyzed the optimal bit rate allocation between the layers and the optimal scalability which requires the least bit rate for the required PSNR for various kinds of contents using JSVM. As a result of investigation, we found that the optimal bit rate allocation occurs when the bit rate of the base layer is minimum, and the spatial scalability shows the best performance. The performance of SVC is similar to that of AVC for spatial scalability, but it depends on contents.

  • PDF

A study on the optimal configuration of harbor structure under the combined loads

  • Cho, Kyu-Nam
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.371-382
    • /
    • 2009
  • Response of harbor structure to environmental loads such as wave load, impact load, ship's contacting load, is a fundamental factor in designing of the structure's optimal configuration. In this paper, typical environmental loads against coastal structures are investigated for designing of the optimal harbor structure. Loads to be considered here are wave load, impact load and contacting load due to ship mooring. Statistical analysis for several harbor structure types under the corresponding loads is carried out, followed by investigation of effect of individual environmental load. Based on these, the optimal configuration for the harbor structure is obtained after considerable engineering process. Estimation of contacting load of the ship is suggested using effective energy concepts for the load, and analysis of structural behavior is done for the optimal designing of the structure in the particular load. A guideline for the design process of the harbor structure is established, and safety of the structure is examined by proposed scheme. For verification of the analytical approach, various steel-piled coastal structures and caissons are chosen and relevant structural analyses are carried out using the Finite Element Methods combined with MIDAS/GTS and ANSYS code. It is found using the Morison equation that impact load cannot be a major load in the typical harbor structure compared with the original wave load, and that configuration shape of the structure may play an important role in consideration of the response criteria.

Optimal Base Position and Joint Configuration of a Wheeled Manipulator

  • Kim, Sung-Bok;Kim, Hyoung-Gi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.834-839
    • /
    • 2004
  • In this paper, we investigate the optimal base position and joint configuration of a planar wheeled mobile manipulator in terms of manipulability measure. Taking into account the level of coordination between a manipulator and a platform, both local and global optimization problems are considered. First, based on the kinematic models of a mobile manipulator, the manipulability measures are expressed along with the analysis of the configurational dependency. Second, the geometric symmetry of a mobile manipulator in view of manipulability measure is analyzed, and for some base positions, the best and worst joint configurations are determined, Third, with reverence to the maximum, minimum, and average manipulability measures, the optimal base positions are determined, and the percent improvements due to the base relocation are discussed considering the relative scales among the platform size, the wheel radius, and the link length.

  • PDF

Cruise Missile Configuration Optimal Design Using Multidisciplinary Analysis (다분야통합 해석을 이용한 순항미사일 형상 최적설계)

  • Choi, Suk-Min;Lee, Seung-Jin;Lee, Jae-Woo;Byun, Young-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.38-42
    • /
    • 2007
  • In this study, cruise missile configuration is optimal designed by using multidisciplinary analysis. Aerodynamic, weight, performance and mission analysis modules are developed by FORTRAN and integrated with framework. Darwin algorithm, a global optimization tool, is used for optimization. In the result of optimal design, gross weight of designed configuration is reduced about 17% than baseline configuration while satisfying design constraint conditions.

  • PDF

A Study on Determining the Optimal Configuration of the FMS with Limited Local Buffers (제한된 Local Buffer를 가진 FMS의 최적구조 결정에 관한 연구)

  • Jeong, Yang-Geun;Kim, Seong-Sik;Jang, Dong-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.15 no.1
    • /
    • pp.105-116
    • /
    • 1989
  • This study presents an algorithm that determines the optimal configuration of the FMSs with limited local buffers. The algorithm finds the lowest cost configuration, i.e. the number of tools, the number of pallets as well as the number of buffers to be installed in front of each machine in the system. Thus it assures a given production ratio with a minimum cost. In the algorithm, FMSs are considered as the closed queueing network with limited queue length. System performance evaluation is performed using the Block-&-Recirculation model developed by Yao and Buzacott. The algorithm is composed with three steps. The steps are namely i) determination of a lower configuration, ii) derivation of an heuristic solution, and iii) obtaining the optimal solution. The computational efforts required in the algorithm usually lies within the capability of personal computers.

  • PDF

Optimal In-Plane Configuration of 3-axis MEMS IMUs Considering Fault Detection and Isolation Performance and Lever Arm Effect (레버암 효과와 고장 감지 및 배제 성능을 고려한 여분의 3축 MEMS IMU의 평면 배치 기법)

  • Kim, Eung Ju;Kim, Yong Hun;Choi, Min Jun;Song, Jin Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1648-1656
    • /
    • 2018
  • The configuration of redundant inertial sensors are very important when considering navigation performance and fault detection and isolation (FDI) performance. By constructing a redundant sensor system using multiple inertial sensors, it is possible to improve the navigation performance and fault detection and isolation performance, which are highly related to the sensor configuration and allocation. In order to deploy multiple MEMS inertial measurement units effectively, a configuration and allocation methods considering navigation performance, fault detection and isolation performance, and lever arm effect in one plane are presented, and the performance is analyzed through simulation in this research. From the results, it is confirmed that the proposed configuration and allocation method can improve navigation, FDI, and lever arm effect rejection performances more effectively by more than 70%.