• 제목/요약/키워드: Optimal Allocation

검색결과 842건 처리시간 0.024초

항만하역 노동력의 효율적인 배분에 관하여 (On the Optimal Allocation of Labour Gangs in the Port)

  • Lee, Cheol-Yeong;Woo, Byung-Goo
    • 한국항만학회지
    • /
    • 제1권1호
    • /
    • pp.21-47
    • /
    • 1987
  • Nowaday all the countries of the world have studied the various problems caused in operating their own ports efficiently. Ship delay in the port is attributal to the inefficient operation in the navigation aids, the cargo handling, the storage and transfer facilities, and to the inefficient allocation of gangs or to a bad service for ships. Among these elements the allocation of gangs is the predominating factor in minimizing ship's turn round time. At present, in the case of Pusan Port. the labour union and stevedoring companies allocate gangs in every hatches of ships by a rule of thumb, just placing emphasis on minimizing ship's turn round time, without applying the principle of allocation during the cargo handling. Owing to this the efficiency of the cargo handling could not be expected to be maximized and this unsystematic operation result in supplying human resources of much unnecessary surplus gangs. Therefore in this paper the optimal size and allocation of gangs for minimizing the ship's turn round time is studied and formularized. For the determination of the priority for allocation the evaluation function, namely $F=PHi^{n}{\times}(W+H)$, can be obtained; where, PHI : Principal Hatch Index W : Total Cargo Weight represented in Gang-Shifts H : Total Number of Ship's hatches and also for the optimal size of gangs the average number of gang allocated per shift (Ng), namely Ng=W/PHI, is used. The proposed algorithm is applied to Pusan Port and its validity is verified.

  • PDF

Bit Allocation for Interframe Video Coding Systems

  • Kim, Wook-Joong;Kim, Seong-Dae;Kim, Jin-Woong
    • ETRI Journal
    • /
    • 제24권4호
    • /
    • pp.280-289
    • /
    • 2002
  • In this work, we present a novel approach to the bit allocation problem that aims to minimize overall distortion subject to a bit rate constraint. The optimal solution can be found by the Lagrangian method with dynamic programming. However, the optimal bit allocation for block-based interframe coding is practically unattainable because of the interframe dependency of macroblocks caused by motion compensation. To reduce the computational burden while maintaining a result close to the optimum, i.e., near optimum, we propose an alternative method. First, we present a partitioned form of the bit allocation problem: a "frame-level problem" and "one-frame macroblock-level problems." We show that the solution to this new form is also the solution to the conventional bit allocation problem. Further, we propose a bit allocation algorithm using a "two-phase optimization technique" with an interframe dependency model and a rate-distortion model.

  • PDF

Optimal Thrust Allocation for Dynamic Positioning of Deep-sea Working Vessel

  • Zhao, Luman;Roh, Myung-Il;Hong, Jeong-Woo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제1권2호
    • /
    • pp.94-105
    • /
    • 2015
  • In this study, a thruster allocation method of a deep-sea working vessel was proposed with the aims of producing the demanded generalized forces and moment for dynamic positioning while at the same time minimizing total power. For this, an optimization problem for thrust allocation was mathematically formulated with design variables, objective function, and constraints. The genetic algorithms (GA) was used to solve the formulated problem. The proposed method was applied to an example of finding optimal thrust allocation of the deep-sea working vessel having 5 thrusters. The result showed that the method could be used to determine better strategy for thruster allocation of the vessel as compared to existing study.

Diversification, performance and optimal business mix of insurance portfolios

  • Kim, Hyun Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권6호
    • /
    • pp.1503-1520
    • /
    • 2013
  • For multi-line insurance companies, allocating the risk capital to each line is a widely-accepted risk management exercise. In this article we consider several applications of the Euler capital allocation. First, we propose visual tools to present the diversification and the line-wise performance for a given loss portfolio so that the risk managers can understand the interactions among the lines. Secondly, on theoretical side, we prove that the Euler allocation is the directional derivative of the marginal or incremental allocation method, an alternative capital allocation rule in the literature. Lastly, we establish the equivalence between the mean-shortfall optimization and the RORAC optimization when the risk adjusted capital is the expected shortfall, and show how to construct the optimal insurance business mix that maximizes the portfolio RORAC. An actual loss sample of an insurance portfolio is used for numerical illustrations.

Bandwidth Allocation and Scheduling Algorithms for Ethernet Passive Optical Networks

  • Joo, Un-Gi
    • Management Science and Financial Engineering
    • /
    • 제16권1호
    • /
    • pp.59-79
    • /
    • 2010
  • This paper considers bandwidth allocation and scheduling problems on Ethernet Passive Optical Networks (EPON). EPON is one of the good candidates for the optical access network. This paper formulates the bandwidth allocation problem as a nonlinear mathematical one and characterizes the optimal bandwidth allocation which maximizes weighted sum of throughput and fairness. Based upon the characterization, two heuristic algorithms are suggested with various numerical tests. The test results show that our algorithms can be used for efficient bandwidth allocation on the EPON. This paper also shows that the WSPT (Weighted Shortest Processing Time) rule is optimal for minimization the total delay time in transmitting the traffic of the given allocated bandwidth.

항만하역노동력의 최적배분에 관한 연구 (I) 단일선박의 경우 (Optimum Allocation of Port Labor Gangs (I) In the case of single ship)

  • 이철영;우병구
    • 한국항해학회지
    • /
    • 제13권1호
    • /
    • pp.55-61
    • /
    • 1989
  • Nowadays much efforts for evaluating the productivity of port physical distribution system to meet the rapid change of the port and shipping circumstances has been made continuously all over the world. The major part of these efforts is the improvement of the productivity of cargo handling system. The cargo equipment system as infrastructure in the cargo handling system is organized well in some degrees, but the management system of manpower as upper structure is still remained in an insufficient degree. There is little study, so far, on a systematic research for the management of port labor gang, and even those were mainly depended on rule of thumb. The object of this study is to introduce the method of optimal allocation and assignment for the labor gang in single ship, which was suggested as a first stage in dealing with them generally. The problem of optimal allocation and assignment of the labor gang can be (I) formalized with multi-stage allocation and assignment of the labor gang can be. (II) dealt with two stages in form of hierarchic structure and moreover, (III) The optimal size of labor gang was obtained through dynamic programming from the point of minimizing the summation of labor gang in every stage, (IV) For the problem of optimal assignment, the optimal policy was determined at the point of minimizing the summation of movement between hatches.

  • PDF

Price-based Resource Allocation for Virtualized Cognitive Radio Networks

  • Li, Qun;Xu, Ding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권10호
    • /
    • pp.4748-4765
    • /
    • 2016
  • We consider a virtualized cognitive radio (CR) network, where multiple virtual network operators (VNOs) who own different virtual cognitive base stations (VCBSs) share the same physical CBS (PCBS) which is owned by an infrastructure provider (InP), sharing the spectrum with the primary user (PU). The uplink scenario is considered where the secondary users (SUs) transmit to the VCBSs. The PU is protected by constraining the interference power from the SUs. Such constraint is applied by the InP through pricing the interference. A Stackelberg game is formulated to jointly maximize the revenue of the InP and the individual utilities of the VNOs, and then the Stackelberg equilibrium is investigated. Specifically, the optimal interference price and channel allocation for the VNOs to maximize the revenue of the InP and the optimal power allocation for the SUs to maximize the individual utilities of the VNOs are derived. In addition, a low‐complexity ±‐optimal solution is also proposed for obtaining the interference price and channel allocation for the VNOs. Simulations are provided to verify the proposed strategies. It is shown that the proposed strategies are effective in resource allocation and the ±‐optimal strategy achieves practically the same performance as the optimal strategy can achieve. It is also shown that the InP will not benefit from a large interference power limit, and selecting VNOs with higher unit rate utility gain to share the resources of the InP is beneficial to both the InP and the VNOs.

수급 불균형을 고려한 전력망의 최적 자원 할당을 위한 일치 기반의 분산 알고리즘 (Consensus-Based Distributed Algorithm for Optimal Resource Allocation of Power Network under Supply-Demand Imbalance)

  • 임영훈
    • 한국정보전자통신기술학회논문지
    • /
    • 제15권6호
    • /
    • pp.440-448
    • /
    • 2022
  • 최근 분산 에너지 자원들의 도입으로 전력망의 최적 자원 할당 문제의 중요성이 강조되고 있고, 대규모 전력망의 방대한 양의 데이터를 처리하기 위해 분산 자원 할당 기법이 요구되고 있다. 최적 자원 할당 문제에서 각 발전기의 발전 용량의 한계로 인하여 수급의 균형이 만족하는 경우를 고려한 연구는 많이 진행되고 있지만, 총 요구량이 최대 발전 용량을 초과하는 경우인 수급 불균형을 고려한 연구는 아직 미미한 실정이다. 본 논문에서는 수급 균형인 상황뿐만 아니라 수급 불균형 상황을 고려하여 전력망의 최적 자원 할당을 위한 일치 기반의 분산 알고리즘을 제안한다. 제안하는 분산 알고리즘은 수급 균형을 만족하는 경우에는 최적의 자원을 할당하고, 수급이 불균형한 경우에는 부족한 자원의 양을 계측할 수 있도록 설계하였다. 마지막으로 모의실험을 통하여 제안된 알고리즘의 성능을 검증하였다.

최소 자산제약 및 인플레이션을 고려한 자산 할당에 관한 연구 (Optimal Asset Allocation with Minimum Performance and Inflation Risk)

  • 임병화
    • 경영과학
    • /
    • 제30권1호
    • /
    • pp.167-181
    • /
    • 2013
  • We investigate the dynamic asset allocation problem under inflation risk when the wealth of an investor is constrained with minimum requirements. To capture the investor's risk preference, the CRRA utility function is considered and he maximizes his expected utility at predetermined date of the refund by participation in the financial market. The financial market is supposed to consist of three kinds of financial instruments which are a risk free asset, a risky asset, and an index bond. The role of an index bond is managing inflation risk represented by price process. The optimal wealth and the optimal asset allocation are derived explicitly by using the method to get the European call option pricing formula. From the numerical results, it is confirmed that the investments on index bond is high when the investor's wealth level is low. However, as his wealth increases, the investments on index bond decreases and he invests on risky asset more. Furthermore, the minimum wealth constraint induces lower investment on risky asset but the effect of the constraints is reduced as the wealth level increases.

Optimal Capacity and Allocation of Distributed Generation by Minimum Operation Cost in Distribution Systems

  • Shim Hun;Park Jung-Hoon;Bae In-Su;Kim Jin-O
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권1호
    • /
    • pp.9-15
    • /
    • 2005
  • In the operation of distribution systems, DGs (Distributed Generations) are installed as an alternative to extension and the establishment of substations, transmission and distribution lines according to the increasing power demand. In the operation planning of DGs, determining optimal capacity and allocation achieves economical profitability and improves the reliability of power distribution systems. This paper proposes a determining method for the optimal number, size and allocation of DGs in order to minimize the operation costs of distribution systems. Capacity and allocation of DGs for economical operation planning duration are determined to minimize total cost composed with power buying cost, operation cost of DGs, loss cost and outage cost using the GA (Genetic Algorithm).