• Title/Summary/Keyword: Optimal Allocation

Search Result 843, Processing Time 0.028 seconds

Discrete bacterial foraging optimization for resource allocation in macrocell-femtocell networks

  • Lalin, Heng;Mustika, I Wayan;Setiawan, Noor Akhmad
    • ETRI Journal
    • /
    • 제40권6호
    • /
    • pp.726-735
    • /
    • 2018
  • Femtocells are good examples of the ultimate networking technology, offering enhanced indoor coverage and higher data rate. However, the dense deployment of femto base stations (FBSs) and the exploitation of subcarrier reuse between macrocell base stations and FBSs result in significant co-tier and cross-tier interference, thus degrading system performance. Therefore, appropriate resource allocations are required to mitigate the interference. This paper proposes a discrete bacterial foraging optimization (DBFO) algorithm to find the optimal resource allocation in two-tier networks. The simulation results showed that DBFO outperforms the random-resource allocation and discrete particle swarm optimization (DPSO) considering the small number of steps taken by particles and bacteria.

Computation Offloading with Resource Allocation Based on DDPG in MEC

  • Sungwon Moon;Yujin Lim
    • Journal of Information Processing Systems
    • /
    • 제20권2호
    • /
    • pp.226-238
    • /
    • 2024
  • Recently, multi-access edge computing (MEC) has emerged as a promising technology to alleviate the computing burden of vehicular terminals and efficiently facilitate vehicular applications. The vehicle can improve the quality of experience of applications by offloading their tasks to MEC servers. However, channel conditions are time-varying due to channel interference among vehicles, and path loss is time-varying due to the mobility of vehicles. The task arrival of vehicles is also stochastic. Therefore, it is difficult to determine an optimal offloading with resource allocation decision in the dynamic MEC system because offloading is affected by wireless data transmission. In this paper, we study computation offloading with resource allocation in the dynamic MEC system. The objective is to minimize power consumption and maximize throughput while meeting the delay constraints of tasks. Therefore, it allocates resources for local execution and transmission power for offloading. We define the problem as a Markov decision process, and propose an offloading method using deep reinforcement learning named deep deterministic policy gradient. Simulation shows that, compared with existing methods, the proposed method outperforms in terms of throughput and satisfaction of delay constraints.

OFDMA 멀티캐스트 시스템에서 신뢰성 있는 멀티미디어 서비스를 보장하기 위한 패킷 및 서브 캐리어 할당 기법 (Joint Packet and Sub-carrier Allocation Scheme to Ensure Reliable Multimedia Service in OFDMA Multicast System)

  • 곽용수;김영용
    • 대한전자공학회논문지TC
    • /
    • 제46권4호
    • /
    • pp.8-12
    • /
    • 2009
  • 우리는 BMPA(balanced multimedia packet allocation) 기법을 제안했다. 이 기법은 OFDMA 멀티캐스트 시스템에서 서브캐리어의 최적 할당 문제를 고려했다. RT(real time) 패킷과 NRT(non-real time) 패킷이 송신 단에 동시에 도달했을 경우, BMPA 기법은 RT 패킷에 NRT 패킷보다 더 큰 가중치를 부여한다. 그리고 각 유저의 패킷 가중치 합에 따라서 서브 캐리어를 할당한다. 이 과정이 패킷 스케듈링과 서브 캐리어 할당 과정을 동시에 수행하게 되고 각 유저는 멀티미디어 패킷을 안정적으로 전송받을 수 있다. 시뮬레이션 결과를 통해 BMPA 기법이 기존의 멀티유저 워터필링 알고리즘에 비해 장기적으로 시스템의 전송 속도를 높이고 RT 패킷의 지연을 크게 줄인다는 것을 증명했다.

Resource Allocation Algorithm Based on Simultaneous Wireless Information and Power Transfer for OFDM Relay Networks

  • Xie, Zhenwei;Zhu, Qi;Zhao, Su
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권12호
    • /
    • pp.5943-5962
    • /
    • 2017
  • A resource allocation algorithm based on simultaneous wireless information and power transfer (SWIPT) to maximize the system throughput is proposed in orthogonal frequency division multiplexing (OFDM) relay networks. The algorithm formulates the problem under the peak power constraints of the source and each subcarrier (SC), and the energy causality constraint of the relay. With the given SC allocation of the source, we give and prove the optimal propositions of the formulated problem. Then, the formulated problem could be decomposed into two separate throughput maximization sub-problems by setting the total power to transfer energy. Finally, several SC allocation schemes are proposed, which are energy priority scheme, information priority scheme, balanced allocation scheme and exhaustive scheme. The simulation results reveal that the energy priority scheme can significantly reduce computational complexity and achieve approximate performance with the exhaustive scheme.

Joint User Association and Resource Allocation of Device-to-Device Communication in Small Cell Networks

  • Gong, Wenrong;Wang, Xiaoxiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권1호
    • /
    • pp.1-19
    • /
    • 2015
  • With the recent popularity of smart terminals, the demand for high-data-rate transmission is growing rapidly, which brings a new challenge for the traditional cellular networks. Both device-to-device (D2D) communication and small cells are effective to improve the transmission efficiency of local communication. In this paper, we apply D2D communication into a small cell network system (SNets) and study about the optimization problem of resource allocation for D2D communication. The optimization problem includes system scheduling and resource allocation, which is exponentially complex and the optimal solution is infeasible to achieve. Therefore, in this paper, the optimization problem is decomposed into several smaller problems and a hierarchical scheme is proposed to obtain the solution. The proposed hierarchical scheme consists of three steps: D2D communication groups formation, the estimation of sub-channels needed by each D2D communication group and specific resource allocation. From numerical simulation results, we find that the proposed resource allocation scheme is effective in improving the spectral efficiency and reducing the outage probability of D2D communication.

A Relay Selection and Power Allocation Scheme for Cooperative Wireless Sensor Networks

  • Qian, Mujun;Liu, Chen;Fu, Youhua;Zhu, Weiping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권4호
    • /
    • pp.1390-1405
    • /
    • 2014
  • This paper investigates optimal relay selection and power allocation under an aggregate power constraint for cooperative wireless sensor networks assisted by amplify-and-forward relay nodes. By considering both transmission power and circuit power consumptions, the received signal-to-noise ratio (SNR) at the destination node is calculated, based on which, a relay selection and power allocation scheme is developed. The core idea is to adaptively adjust the selected relays and their transmission power to maximize the received SNR according to the channel state information. The proposed scheme is derived by recasting the optimization problem into a three-layered problem-determining the number of relays to be activated, selecting the active relays, and performing power allocation among the selected relays. Monte Carlo simulation results demonstrate that the proposed scheme provides a higher received SNR and a lower bit error rate as compared to the average power allocation scheme.

Regional allocation of carbon emissions in China based on zero sum gains data envelopment analysis model

  • Wen, Lei;Zhang, Er nv
    • Environmental Engineering Research
    • /
    • 제21권1호
    • /
    • pp.91-98
    • /
    • 2016
  • Along with China's increasing share in global total $CO_2$ emissions, there is a necessity for China to shoulder large emission-mitigating responsibility. The appropriate allocation of $CO_2$ emission quotas can build up a solid foundation for future emissions trading. In views of originality, an optimized approach to determine $CO_2$ emissions allocation efficiency based on the zero sum gains data envelopment analysis (ZSG-DEA) method is proposed. This paper uses a non-radial ZSG-DEA model to allocate $CO_2$ emissions between different Chinese provinces by 2020 and treats $CO_2$ as the undesirable output variable. Through the calculation of efficiency allocation amounts of provincial $CO_2$ emissions, all provinces are on the ZSG-DEA efficiency frontier. The allocation results indicate that the cumulative optimal amounts of $CO_2$ emissions in 2020 were higher than the actual amounts in 13 provinces, and lower in other 17 provinces, and show that different provinces have to shoulder different mitigation burdens in terms of emission reduction.

MOST 네트워크에서 전송 스트림의 요구 대역폭에 따른 채널 할당 방안 (A Channel Allocation Method according to the required bandwidth of streams in MOST network)

  • 김선남;장시웅;유윤식
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 추계학술대회
    • /
    • pp.131-134
    • /
    • 2009
  • 차량용 인포테인먼트 네트워크인 MOST에서 멀티미디어 서비스를 원활히 제공하기 위해 효율적인 채널할당이 요구된다. MOST 네트워크의 채널할당에 관한 연구로서 스트리밍데이터 전송을 효율적으로 하기 위한 네트워크의 부하에 따른 채널 할당에 관한 연구는 있으나 전송하고자 하는 데이터의 대역폭에 따라 채널의 할당을 결정하는 연구 사례는 없다. 따라서, 본 논문에서는 전송하고자 하는 멀티미디어 데이터를 분석한 후 최적의 요구채널을 산출하여 할당할 채널의 수를 결정하는 방안을 제안한다. 제안하는 방안을 토대로 MOST 네트워크의 데이터 영역에 채널을 할당 시 최적의 채널을 할당함으로써 채널의 낭비를 줄이고 Boundary Descriptor의 변경으로 인한 네트워크 초기화를 예방할 수 있다.

  • PDF

Multi-Slice Joint Task Offloading and Resource Allocation Scheme for Massive MIMO Enabled Network

  • Yin Ren;Aihuang Guo;Chunlin Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권3호
    • /
    • pp.794-815
    • /
    • 2023
  • The rapid development of mobile communication not only has made the industry gradually diversified, but also has enhanced the service quality requirements of users. In this regard, it is imperative to consider jointly network slicing and mobile edge computing. The former mainly ensures the requirements of varied vertical services preferably, and the latter solves the conflict between the user's own energy and harsh latency. At present, the integration of the two faces many challenges and need to carry out at different levels. The main target of the paper is to minimize the energy consumption of the system, and introduce a multi-slice joint task offloading and resource allocation scheme for massive multiple input multiple output enabled heterogeneous networks. The problem is formulated by collaborative optimizing offloading ratios, user association, transmission power and resource slicing, while being limited by the dissimilar latency and rate of multi-slice. To solve it, assign the optimal problem to two sub-problems of offloading decision and resource allocation, then solve them separately by exploiting the alternative optimization technique and Karush-Kuhn-Tucker conditions. Finally, a novel slices task offloading and resource allocation algorithm is proposed to get the offloading and resource allocation strategies. Numerous simulation results manifest that the proposed scheme has certain feasibility and effectiveness, and its performance is better than the other baseline scheme.

IEEE 802.16j 멀티홉 릴레이 네트워크를 위한 통합 자원 할당-라우팅 기법 (A Joint Resource Allocation and Routing Scheme for the IEEE 802.16j Multi-hop Relay Networks)

  • 이경주;이혁준
    • 한국ITS학회 논문지
    • /
    • 제8권1호
    • /
    • pp.82-91
    • /
    • 2009
  • 기지국과 이동 단말 간의 경로 설정, 즉 라우팅은 멀티홉 셀룰러 시스템의 핵심 기술 중 하나이다. 또한, 멀티홉 셀룰러 시스템에서 기지국과 중계기들이 각 셀의 자원을 공유하므로, 전체 시스템의 가용 무선 자원을 최대한 이용할 수 있는 자원 할당 기법이 필요하다. 본 논문에서는 OFDMA 기반 멀티홉 셀룰러 시스템을 위한 통합 자원할당-라우팅 기법을 제안한다. 제안하는 기법은 전체 시스템의 하향 링크 처리율을 최대화하기 위한 통합 자원 할당-라우팅 문제를 MMKP 기반 휴리스틱 알고리즘을 이용하여 근사 해를 구한다. 실험 결과는 제안하는 기법이 시스템의 하향 링크 처리율 측면에서 링크 품질 기반 라우팅 기법보다 높은 성능을 나타내며, 최적 해를 도출하는 기법에 근접한 성능을 나타냄을 보인다.

  • PDF