• Title/Summary/Keyword: Optical temperature sensors

Search Result 220, Processing Time 0.03 seconds

Improvements to the stability of electric field sensors

  • Lee, Dong-Oh;Robert Boston;Dietrich W. Langer;Joel Falk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.495-496
    • /
    • 1998
  • The measurement of the amplitude and phase of electric fields on high voltage transmission lines is important for several reasons including a) Metering and determination of power flow, b) protective relaying. and c) fault sensing. The work reported here is directed toward a major improvement to optically based, electric-field sensors. This is a signal processing based technique for overcoming the instabilities of conventional, optically-based, electric-field sensors to changes in optical power or temperature.

  • PDF

Synthesis and Optoelectronic Characteristics of Ag2Se Nanoparticle for NIR Sensor Application (근적외선 센서를 위한 Ag2Se 나노 입자 합성 및 광전기적 특성)

  • Jang, Jaewon
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.266-269
    • /
    • 2019
  • In this study, $Ag_2Se$ nanoparticles were synthesized by employing the colloidal method. The synthesized $Ag_2Se$ nanocrystals were spherical in shape with a diameter of approximately 4 nm and had high crystallinity. These attributes of $Ag_2Se$ nanocrystals were determined through images obtained from a high resolution transmission electron microscope. Thin films comprising the synthesized $Ag_2Se$ nanoparticles had an optical band gap of 1.5 eV. Furthermore, fabricated NIR sensors comprising $Ag_2Se$ nanoparticles exhibited a high detectivity of $5.5{\times}10^9$ Jones (above $1{\times}10^9$) at room temperature, leading to low power consumption

Magnetic and Magneto-Optical Properties of Conjugated Polymers: A New Frontier

  • Gangopandhyay, Palash;Foerier, Stijn;Vangheluwe, M.;Koeckelberghs, Guy;Verbiest, Thiery;Persoons, Andr
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.23-24
    • /
    • 2006
  • Magnetic and magneto-optical properties of regioregular (>99%) poly(3-dodecylthiopenes are investigated. Faraday rotation of spin-coated films show extremely large Verdet constants, falling strongly with decreasing regioregularity. EPR spectroscopy at room temperature shows the presence of about 1 spin/190 monomers, indicative of delocalisation beyond a single polymer chain. SQUID measurements on the polymer give an effective magnetic moment of about 48900 mB, corrsponding to a S-value of 25.000. The Weiss-constant is 1.33 K indicating ferromagnetic coupling. Our experimental results show that organic polymer magnets can be prepared. Large MO effects allow the use of these materials in all-organic MO-sensors and devices.

  • PDF

A Development and Performance Assessment of On-Line Monitoring System for Optical Fiber Composite Underground Distribution Network using DTS (DTS를 활용한 광복합 지중 배전계통 실시간 감시시스템 개발 및 성능평가)

  • Cho, Jin-Tae;Kim, Ju-Yong;Lee, Hak-Ju;Cho, Hwi-Chang;Choi, Myeong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.115-121
    • /
    • 2011
  • Intelligent distribution equipment is inevitable to realize self-healing which is one of smart grid functions in distribution network. Therefore, most of distribution equipment have been developed with self diagnostic sensors. However, it is not effective to construct on-line monitoring system for underground distribution cable because of high cost and low sensitivity. Recently, optical fiber composite cable is being considered for communication and power delivery in order to cope with increasing communication in distribution network. This paper presents the design and performance assessment results of underground cable on-line monitoring system using DTS(Distributed Temperature Sensing) and optical fiber composite underground cable.

Characteristics and fabrication of POF using organic nonlinear optical materials (유기 비선형 광학 재료를 이용한 플라스틱 광섬유 제작 및 특성)

  • Kim, Eung-Soo;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.297-301
    • /
    • 2006
  • We have fabricated a multi-mode nonlinear plastic optical fiber (POF) using organic nonlinear optical materials and demonstrated the propagation of light. The refractive indices of core and cladding are 1.5240 and 1.5172. We made a POF preform by rod-in tube method. The core diameter of the fabricated POF is about $30{\mu}m$. We evaluated the temperature characteristics of POF. The sensitivity is $0.345{\;}mW/^{\circ}C$ and the linearity of sensor was good.

Infrared Light Absorbance: a New Method for Temperature Compensation in Nondispersive Infrared CO2 Gas Sensor

  • Yi, Seung Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.303-311
    • /
    • 2020
  • Nondispersive infrared CO2 gas sensor was developed after the simulation of optical cavity structure and assembling the optical components: IR source, concave reflectors, Fresnel lens, a hollow disk, and IR detectors. By placing a hollow disk in front of reference IR detector, the output voltages are almost constant value, near to 70.2 mV. The absorbance of IR light, Fa, shows the second order of polynomial according to ambient temperatures at 1,500 ppm. The differential output voltages and the absorbance of IR light give a higher accuracy in estimations of CO2 concentrations with less than ± 1.5 % errors. After implementing the parameters that are dependent upon the ambient temperatures in microcontroller unit (MCU), the measured CO2 concentrations show high accuracies (less than ± 1.0 %) from 281 K to 308 K and the time constant of developed sensor is about 58 sec at 301 K. Even though the estimation errors are relatively high at low concentration, the developed sensor is competitive to the commercial product with a high accuracy and the stability.

Nitrogen Monoxide Gas Sensing Characteristics of Transparent p-type Semiconductor CuAlO2 Thin Films (투명한 p형 반도체 CuAlO2 박막의 일산화질소 가스 감지 특성)

  • Park, Soo-Jeong;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.477-482
    • /
    • 2013
  • We investigated the detection properties of nitrogen monoxide (NO) gas using transparent p-type $CuAlO_2$ thin film gas sensors. The $CuAlO_2$ film was fabricated on an indium tin oxide (ITO)/glass substrate by pulsed laser deposition (PLD), and then the transparent p-type $CuAlO_2$ active layer was formed by annealing. Structural and optical characterizations revealed that the transparent p-type $CuAlO_2$ layer with a thickness of around 200 nm had a non-crystalline structure, showing a quite flat surface and a high transparency above 65 % in the range of visible light. From the NO gas sensing measurements, it was found that the transparent p-type $CuAlO_2$ thin film gas sensors exhibited the maximum sensitivity to NO gas in dry air at an operating temperature of $180^{\circ}C$. We also found that these $CuAlO_2$ thin film gas sensors showed reversible and reliable electrical resistance-response to NO gas in the operating temperature range. These results indicate that the transparent p-type semiconductor $CuAlO_2$ thin films are very promising for application as sensing materials for gas sensors, in particular, various types of transparent p-n junction gas sensors. Also, these transparent p-type semiconductor $CuAlO_2$ thin films could be combined with an n-type oxide semiconductor to fabricate p-n heterojunction oxide semiconductor gas sensors.

Optical Current Sensors with Improved Reliability using an Integrated-Optic Reflective Interferometer (반사형 간섭계를 이용하여 신뢰성을 향상시킨 광전류센서)

  • Kim, Sung-Moon;Chu, Woo-Sung;Oh, Min-Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.17-23
    • /
    • 2017
  • Optical current sensors are suitable for operation in high voltage and high current environments such as power plants due to they are not affected by electromagnetic interference and have excellent insulation characteristics. However, as they operate in a harsh environment such as large temperature fluctuation and mechanical vibration, high reliability of the sensor is required. Therefore, many groups have been working on enhancing the reliability. In this work, an integrated optical current sensor incorporating polarization-rotated reflection interferometer is proposed. By integrating various optical components on a single chip, the sensor exhibits enhanced stability as well as the solution for low-cost optical sensors. Using this, we performed the characterization for the actual field application. By using a large power source, the current of 0.3 kA~36 kA was applied to the photosensor and the linear operation characteristics were observed. The error of the sensor was within $0{\pm}.5%$. Even when operating for a long time, the error range of the sensor was kept within $0{\pm}.5%$. In addition, the measurement of the frequency response over the range of 60 Hz to 10 kHz has confirmed that the 3-dB frequency band of the proposed OCT is well over 10 kHz.

Multiplexed fabry-perot interferometric sensor system (다중화 Fabry-Perot 간섭형 광섬유 센서 시스템)

  • 나도성;예윤해;이동영;박광순
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.4
    • /
    • pp.273-278
    • /
    • 1999
  • A TDM-multiplexed fiber optic pressure/temperature sensor system utilizing fiber optic Fabry-Perot interferometers as sensing devices was developed and applied to measure water level variations and temperature variations. The maximum measurement speed of the system without saving measurement data is 4500 times per second and the response time of the sensors is thought to be ~ms. The difference between the theoretical value and the measured value for the scale factor of water level sensor and temperature sensor was +13.7%, -18% respectively. The nonlinearity of the sensors after calibration was less than 1%. The sensor system was applied to verify the capability of measuring the temperature variations and water level variations at a high speed.

  • PDF

Flexible and Transparent Reduced Graphene Oxide Nanocomposite Field-Effect Transistor for Temperature Sensing

  • Tran, QuangTrung;Ramasundaram, Subramanian;Hong, Seok Won;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.387.1-387.1
    • /
    • 2014
  • A new class of temperature-sensing materials is demonstrated along with their integration into transparent and flexible field-effect transistor (FET) temperature sensors with high thermal responsivity, stability, and reproducibility. The novelty of this particular type of temperature sensor is the incorporation of an R-GO/P(VDF-TrFE) nanocomposite channel as a sensing layer that is highly responsive to temperature, and is optically transparent and mechanically flexible. Furthermore, the nanocomposite sensing layer is easily coated onto flexible substrates for the fabrication of transparent and flexible FETs using a simple spin-coating method. The transparent and flexible nanocomposite FETs are capable of detecting an extremely small temperature change as small as $0.1^{\circ}C$ and are highly responsive to human body temperature. Temperature responsivity and optical transmittance of transparent nanocomposite FETs were adjustable and tuneable by changing the thickness and R-GO concentration of the nanocomposite.

  • PDF