DOI QR코드

DOI QR Code

Synthesis and Optoelectronic Characteristics of Ag2Se Nanoparticle for NIR Sensor Application

근적외선 센서를 위한 Ag2Se 나노 입자 합성 및 광전기적 특성

  • Jang, Jaewon (School of Electronics Engineering, Kyungpook National University)
  • 장재원 (경북대학교 IT 대학 전자공학부)
  • Received : 2019.07.25
  • Accepted : 2019.07.30
  • Published : 2019.07.31

Abstract

In this study, $Ag_2Se$ nanoparticles were synthesized by employing the colloidal method. The synthesized $Ag_2Se$ nanocrystals were spherical in shape with a diameter of approximately 4 nm and had high crystallinity. These attributes of $Ag_2Se$ nanocrystals were determined through images obtained from a high resolution transmission electron microscope. Thin films comprising the synthesized $Ag_2Se$ nanoparticles had an optical band gap of 1.5 eV. Furthermore, fabricated NIR sensors comprising $Ag_2Se$ nanoparticles exhibited a high detectivity of $5.5{\times}10^9$ Jones (above $1{\times}10^9$) at room temperature, leading to low power consumption

Keywords

HSSHBT_2019_v28n4_266_f0001.png 이미지

Fig. 1. TEM images of synthesized Ag2Se nanoparticles

HSSHBT_2019_v28n4_266_f0002.png 이미지

Fig. 2. EDX spectrum taken from Ag2Se nanoparticles

HSSHBT_2019_v28n4_266_f0003.png 이미지

Fig. 3. XPS spectra of synthesized Ag2Se nanoparticles.

HSSHBT_2019_v28n4_266_f0004.png 이미지

Fig. 4. XRD patterns of Ag2Se films, annealed at 100 ℃ and annealed at 150 ℃.

HSSHBT_2019_v28n4_266_f0005.png 이미지

Fig. 5. (a) Absorbance and (b) (αhv)2 vs. hc curves of Ag2Se thin films

HSSHBT_2019_v28n4_266_f0006.png 이미지

Fig. 6. (a) The attained film thickness of Ag2Se films annealed at 150 ℃, as a function of the spin speed and (b) Transient photocurrent characteristics obtained for the Ag2Se based photodetector, as a function of film thicknesses.

HSSHBT_2019_v28n4_266_f0007.png 이미지

Fig. 7. The extracted representative parameters, corresponding to film thickness: (a) R, D and (b) G, S.

References

  1. A. Rogalski, J. Antoszewski, and L. Faraone, "Third-generation infrared photodetector arrays", J. Appl. Phys., Vol. 105, No. 9, pp. 091101(1)-091101(44), 2009. https://doi.org/10.1063/1.3099572
  2. M. Ettenberg, "A little night vision", Adv. Imaging, Vol. 20, No. 3, pp. 29-32, 2005.
  3. E. H. Sargent, "Infrared quantum dots", Adv. Mater., Vol. 17, No. 5, pp. 515-522, 2005. https://doi.org/10.1002/adma.200401552
  4. E. Monroy, F. Omne's, and F. Calle, "Wide-bandgap semiconductor ultraviolet photodetectors", Semicond. Sci. Technol., Vol. 8., No. 4, pp. R33-R51, 2003.
  5. R. H. Yuang, J. I. Chyi, W. Lin, and Y. K. Tu, "High-speed InGaAs metal-semiconductor-metal photodetectors with improved responsivity and process yield", Opt. Quantum Electron., Vol. 28, No. 10, pp. 1327-1334, 1996. https://doi.org/10.1007/BF00326205
  6. L. Tan, A. Wan, T. Zhao, R. Huang, and H. Li, "Aqueous synthesis of multidentate-polymer-capping Ag2Se quantum dots with bright photoluminescence tunable in a second near-infrared biological window", ACS Appl. Mater. Interfaces., Vol. 6, No. 9, pp. 6217-6222, 2014. https://doi.org/10.1021/am5015088
  7. P. Norton, "HgCdTe infrared detectors", Opto-Electron. Rev., Vol. 10, No. 3, pp. 159-174, 2002.
  8. G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E, H, Sargent, "Ultrasensitive solution-cast quantum dot photodetectors", Nature, Vol. 442, pp. 180-183, 2006. https://doi.org/10.1038/nature04855
  9. S. Lee, W. Y. Lee, B. Jang, T. Kim, J. H. Bae, K. Cho, S. Kim, and J. Jang, "Sol-gel processed p-type CuO phototransistor for a near infrared sensors", IEEE Electron Device Lett., Vol. 39, No. 1, pp. 47-50, 2017. https://doi.org/10.1109/LED.2017.2779816
  10. J. Jang, F. Pan, K. Braam, and V. Subramanian, "Resistive switching characteristics of solid electrolyte chalcogenide Ag2Se nanoparticles for flexible nonvolatile memory application", Adv. Mater., Vol. 24, No. 26, pp. 3573-3576, 2012. https://doi.org/10.1002/adma.201200671
  11. Z. Zhang, Y. Yang, J. Gao, S. Xiao, C. Zhou, D. Pan, G. Liu, and X. Guo, "Highly efficient Ag2Se quantum dots blocking layer for solid-state dye-sensitized solar cells: Size effects on device performances", Mater. Today Energy, Vol. 7, pp. 27-36, 2018. https://doi.org/10.1016/j.mtener.2017.11.005
  12. S. Tang, C. He, D. Li, W. Cai, L. Fan, and Y. Li, "Precursor reactivity differentiation for single-step preparation of Ag2Se@Ag2S core-shell nanocrystals with distinct absorption and emission properties enabling sensitive near-infrared photodetection", J. Mater. Sci., Vol. 533, No. 16, pp. 11355-11366, 2018.
  13. B. Gates, B. Mayers, Y. Wu, Y. Sun, B. Cattle, P. Yang, and Y. Xia. Y, "Synthesis and Characterization of Crystalline Ag2Se Nanowires Through a Template-Engaged Reaction at Room Temperature", Adv. Funct. Mater., Vol. 12, No. 10, pp. 679-686, 2002. https://doi.org/10.1002/1616-3028(20021016)12:10<679::AID-ADFM679>3.0.CO;2-#
  14. Y. J. Glanville, D. G. Narehood, P. E. Sokol, A. Amma, and T. Mallouk, "Preparation and synthesis of Ag2Se nanowires produced by template directed synthesis", J. Mater. Chem.,Vol. 12, No. 8, pp. 2433-2434, 2002. https://doi.org/10.1039/b202913h
  15. A. N. Goldstein, "The melting of silicon nanocrystals: Submicron thin-film structures derived from nanocrystal precursors", Appl. Phys. A, Vol. 62, No. 1, pp. 33-37, 1996. https://doi.org/10.1007/BF01568084
  16. J. Jang, K. Cho, S. H. Lee, and S. Kim, "Transparent and flexible thin-film transistors with channel layers composed of sintered HgTe nanocrystals", Nanotechnology, Vol. 19, No. 1, pp. 015204(1)-015204(5), 2007. https://doi.org/10.1088/0957-4484/19/01/015204
  17. J. Jang, K. Cho, K. Byun, W. S. Hong, and S. Kim, "Optoelectronic characteristics of HgSe nanoparticle films spincoated on flexible plastic substrates"", Jpn. J. Appl. Phys., Vol. 49, No. 3, pp. 030210-030212, 2010. https://doi.org/10.1143/JJAP.49.030210
  18. M. Boberl, M. V. Kovalenko, S.Gamerith, E. J. W. List, and W. Heiss, "Inkjet-printed nanocrystal photodetectors operating up to 3${\mu}m$ wavelengths", Adv. Mater., Vol. 19, No. 21, pp. 3574-3578, 2007. https://doi.org/10.1002/adma.200700111
  19. W. Choi, M. Y. Cho, A. Konar, J. H. Lee, G. B. Cha, S. C. Hong, S. Kim, J. Kim, D. Jena, J. Joo, and S. Kim, "Highdetectivity multilayer $MoS_2$ phototransistors with spectral response from ultraviolet to infrared", Adv. Mater., Vol. 24, No. 43, pp. 5382-5836, 2012.
  20. S. Dias, K. Kumawat, S. Biswas, and S. B. Krupanidhi, "Solvothermal Synthesis of Cu2SnS3 Quantum Dots and Their Application in Near-Infrared Photodetectors", Inorg. Chem., Vol. 56, No. 4, pp. 2198-2203, 2017. https://doi.org/10.1021/acs.inorgchem.6b02832