• Title/Summary/Keyword: Optical force

Search Result 726, Processing Time 0.03 seconds

Low-velocity impact performance of the carbon/epoxy plates exposed to the cyclic temperature

  • Fathollah Taheri-Behrooz;Mahdi Torabi
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.305-320
    • /
    • 2023
  • The mechanical properties of polymeric composites are degraded under elevated temperatures due to the effect of temperature on the mechanical behavior of the resin and resin fiber interfaces. In this study, the effect of temperature on the impact response of the carbon fiber reinforced plastics (CFRP) was investigated at low-velocity impact (LVI) using a drop-weight impact tester machine. All the composite plates were fabricated using a vacuum infusion process with a stacking sequence of [45/0_2/-45/90_2]s, and a thickness of 2.9 mm. A group of the specimens was exposed to an environment with a temperature cycling at the range of -30 ℃ to 65 ℃. In addition, three other groups of the specimens were aged at ambient (28 ℃), -30 ℃, and 65 ℃ for ten days. Then all the conditioned specimens were subjected to LVI at three energy levels of 10, 15, and 20 J. To assess the behavior of the damaged composite plates, the force-time, force-displacement, and energy-time diagrams were analyzed at all temperatures. Finally, radiography, optical microscopy, and scanning electron microscopy (SEM) were used to evaluate the effect of the temperature and damages at various impact levels. Based on the results, different energy levels have a similar effect on the LVI behavior of the samples at various temperatures. Delamination, matrix cracking, and fiber failure were the main damage modes. Compared to the samples tested at room temperature, the reduction of temperature to -30 ℃ enhanced the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. The temperature increasing to 65 ℃ increased the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. Applying 200 thermal cycles at the range of -30 ℃ to 65 ℃ led to the formation of fine cracks in the matrix while decreasing the absorbed energy. The maximum contact force is recorded under cyclic temperature as 5.95, 6.51 and 7.14 kN, under impact energy of 10, 15 and 20 J, respectively. As well as, the minimum contact force belongs to the room temperature condition and is reported as 3.93, 4.94 and 5.71 kN, under impact energy of 10, 15 and 20 J, respectively.

Characterization and Fabrication of Tin Oxide Thin Film by RF Reactive Sputtering (RF Reactive Sputtering법에 의한 산화주석 박막의 제조 및 특성)

  • Kim, Young-Rae;Kim, Sun-Phil;Kim, Sung-Dong;Kim, Sarah Eun-Kyung
    • Korean Journal of Materials Research
    • /
    • v.20 no.9
    • /
    • pp.494-499
    • /
    • 2010
  • Tin oxide thin films were prepared on borosilicate glass by rf reactive sputtering at different deposition powers, process pressures and substrate temperatures. The ratio of oxygen/argon gas flow was fixed as 10 sccm / 60 sccm in this study. The structural, electrical and optical properties were examined by the design of experiment to evaluate the optimized processing conditions. The Taguchi method was used in this study. The films were characterized by X-ray diffraction, UV-Vis spectrometer, Hall effect measurements and atomic force microscope. Tin oxide thin films exhibited three types of crystal structures, namely, amorphous, SnO and $SnO_2$. In the case of amorphous thin films the optical band gap was widely spread from 2.30 to 3.36 eV and showed n-type conductivity. While the SnO thin films had an optical band gap of 2.24-2.49 eV and revealed p-type conductivity, the $SnO_2$ thin films showed an optical band gap of 3.33-3.63 eV and n-type conductivity. Among the three process parameters, the plasma power had the most impact on changing the structural, electrical and optical properties of the tin oxide thin films. It was also found that the grain size of the tin oxide thin films was dependent on the substrate temperature. However, the substrate temperature has very little effect on electrical and optical properties.

Fabrication of Nano-bridge Using a Suspended Multi-Wall Carbon Nanotube (다중벽 탄소나노튜브를 이용한 나노 브리지 제작)

  • Lee, Jong-Hong;Won, Moon-Cheol;Seo, Hee-Won;Song, Jin-Woo;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.134-139
    • /
    • 2007
  • We report the suspension of individual multi-walled carbon nanotubes (MWNTs) from the bottom substrate using deep trench electrodes that were fabricated using optical lithography. During drying of the solution in dielectrophoretic assembly, the capillary force pulls the MWNT toward the bottom substrate, and it then remains as a deformed structure adhering to the bottom substrate after the solution has dried out. Small-diameter MWNTs cannot be suspended using thin electrodes with large gaps, but large-diameter MWNTs can be suspended using thicker electrodes. We present the statistical experimental results for successful suspension, as well as the feasible conditions for a MWNT suspension based on a theoretical approach.

A Study on Damaged Layer Characteristics according to Cutting Speed in End-milling (엔드밀 가공시 가공속도에 따른 가공변질층 특성 연구)

  • 황인옥;이종환;김전하;강명창;김정석;이득우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.778-781
    • /
    • 2004
  • As the technique of high-speed end-milling is widely adopted to in machining field. The investigation for microscopic precision of workpiece is necessary for machinability evolution. In this study, cutting force, cutting temperature and microhardness were investigated to evaluate damaged layer in conventional machining and high-speed machining. Damaged layer was measured using optical microscope. The thickness of damaged layer depends on cutting process parameters, specially feed per tooth and radial depth. It is obtained that the characteristics of damaged layer is high-speed machining better than conventional machining.

  • PDF

Mechanical Machining of Prism Pattern (프리즘 패턴의 기계적 절삭 가공)

  • Yoo Y. E.;Hong S. M.;Je T. J.;Choi D. S.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.71-75
    • /
    • 2006
  • In recent, various shapes of pattern in micron or nano scale are adapted in many applications due to their good mechanical or optical properties. Light guide panel (LGP) of the LCD is one of important applications for micro pattern and micro prism shape is one of the typical patterns. The size of the surface patterns in most applications is decreasing to the order of micron or even under micron. On the other hand, the area to be patterned keeps enlarging. These two trends in patterned products require tooling micro patterns on large surface, which has still many technical problems to be solved mainly due to pattern size and the tooling area. In this study, we fabricated prism shape of patterns using diamond cutting tool on some metal core and plastic core like PMMA. Some cutting conditions were investigated including cutting force, cutting depth and speed for different core materials.

A study of optical characteristics correlated with low dielectric constant of SiOCH thin films through Ellipsometry (Ellipsometry를 이용한 저 유전 상수를 갖는 SiOCH박막의 광학특성 연구)

  • Park, Yonh-Heon;Hwang, Chang-Su;Kim, Hong-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.198-198
    • /
    • 2010
  • The low-k SiOCH thin films were prepared by CCP-PECVD method using BTMSM(Bis-trimethylsilylmethane) precursors deposited on p-Si wafer. The structural complexity originate the complex refractive constants of the films, and resulted the elliptical polarization of the incident linearly polarized light source of Xe-ramp in the range from 190nm to 2100nm. Phase difference and amplitude ratio between s wave and p wave propagating through SiOCH thin film was studied. After annealing, the amplitude of p wave was reduced more than s wave, and phase difference between p and s wave was also reduced.

  • PDF

A Study of Position Control and Design for Microelectrostatic Mechanical Actuator (미세 작동기의 설계 및 위치 제어에 관한 연구)

  • Choi, Won-Seok;Jee, Tea-Young;Kim, Kun-Nyun;Park, Hyo-Derk;Heo, Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.911-916
    • /
    • 2003
  • Microactuator is frequently used in some optical or electrical applications such as light modulators and spatial scanner devices. When microactuator is implemented, it should be operated at accurate positions proportional to input voltage. Therefore in order to obtain rapid responses and reduced errors, a position control technique is used. In the paper, design procedure for the mems actuator and a typical PID controller is adapted to improve performance of microactuator as well. Also electrostatic force for the torsional microactuator is calculated via well-known Hornbeck's method.

  • PDF

Design and Analysis of linear motor for slim-line ODD (소형 ODD용 선형 구동기의 설계 및 특성 해석)

  • Shim, Min-Taek;Park, Joon-Hyuk;Baek, Yoon-Su
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.378.2-378
    • /
    • 2002
  • This paper deals with a moving coil type linear motor for fast access of the miniature ODD. This slim-line motor is composed of the mover supported by guide mechanism, the coil wound into it, and the yoke attached to the permanent magnet for stator. The driving force is generated by the PM of the stator and the current in the coil of the mover. Magnetic circuit analysis and Finite Element Method are applied to estimate force at air gap. (omitted)

  • PDF

Ultra Precision cutting Characteristics for Al 6061 (Al 6061의 초정밀 절삭특성)

  • 박상진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.591-596
    • /
    • 2000
  • The needs of ultra precision machined parts is increase every days. But the experimental data of nonferrous metal is insufficient. The cutting behavior in micro cutting area is different from that of traditional cutting because of the size effect. Al6061 is widely used as optical parts such as LASER reflector's mirror or multimedia instrument. Al6061 opper is machined by ultra precision machine with natural diamond tool. From the experiment and discussion on the cutting force and worked surface roughness as the variable spindle speed, feed rate and depth of cut. As a result, the cutting force increases as the increasing depth of cut, but the worked surface roughness does not increase so much. The surface roughness is good when spindle sped is above 1200rpm, and feed rate is small. The influence of depth of cut is very small.

  • PDF

Characteristics of damaged layer in high speed end milling (고속 엔드밀 가공에서 가공변질층의 특성)

  • 김동은
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.326-331
    • /
    • 2000
  • In this study, residual stress was investigated experimentally to evaluate damaged layer in high-sped machining. In machining difficult-to-cut material, residual stress remaining in machined surface was mainly speared as compressive stress. The scale of this damaged layer depends upon cutting speed, feed per tooth and radial cutting depth. Damaged layer was measured by optical microscope. The micro-structure of damaged layer was a mixed maternsite and austenite. depth of damaged layer is increased with increasing of cutting temperature, cutting force and radial depth. On the other hand, that is slightly decreased with decreasing of cutting force. The increase of tool wear causes a shift of the maximum residual stress in machined surface layer.

  • PDF