Fabrication of Nano-bridge Using a Suspended Multi-Wall Carbon Nanotube

다중벽 탄소나노튜브를 이용한 나노 브리지 제작

  • 이종홍 (충남대학교 메카트로닉스공학과) ;
  • 원문철 (충남대학교 메카트로닉스공학과) ;
  • 서희원 (한국기계연구원 나노공정장비연구센터) ;
  • 송진원 (한국기계연구원 나노공정장비연구센터) ;
  • 한창수 (한국기계연구원 나노공정장비연구센터)
  • Published : 2007.03.01

Abstract

We report the suspension of individual multi-walled carbon nanotubes (MWNTs) from the bottom substrate using deep trench electrodes that were fabricated using optical lithography. During drying of the solution in dielectrophoretic assembly, the capillary force pulls the MWNT toward the bottom substrate, and it then remains as a deformed structure adhering to the bottom substrate after the solution has dried out. Small-diameter MWNTs cannot be suspended using thin electrodes with large gaps, but large-diameter MWNTs can be suspended using thicker electrodes. We present the statistical experimental results for successful suspension, as well as the feasible conditions for a MWNT suspension based on a theoretical approach.

Keywords

References

  1. Baughman, R. H., Zakhidov, A. A. and Reef, W. A., 'Carbon Nanotubes-the Route Toward Applications,' Science, Vol. 297, pp. 787-792, 2002 https://doi.org/10.1126/science.1060928
  2. Sazonova, V., Yuval, Y., Dstilnel, R., Roundy, D., Arias, T. A. and McEuen, P. L., 'A tunable carbon nanotube electromechanical oscillator,' Nature, Vol. 431, pp 284-287, 2004 https://doi.org/10.1038/nature02905
  3. Babic, B., Furer, J., Sahoo, S., Farangfar, Sh. and Schonenberger, C., 'Intrinsic thermal vibration of suspended doubly clamped single-wall carbon nanotubes,' Nano Lett., Vol. 3, No. 11, pp. 1577-­1580,2003 https://doi.org/10.1021/nl0344716
  4. Collins, P. G, Bradely, K. B., Ishigami, M. and Zettl, A., 'Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes,' Science, Vol. 287, pp. 1801-1804, 2000 https://doi.org/10.1126/science.287.5459.1801
  5. Akita, S., Nakayama, Y., Mizooka, S., Takano, Y., Okawa, T., Miyatake, Y., Yamanaka, S., Tsuji, T. and Nosaka, T., 'Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope,' Appl. Phys. Lett., Vol. 79, No. 11, pp. 1691-1693, 2001 https://doi.org/10.1063/1.1403275
  6. Kong, J., Franklin, N. R., Zhou, C., Chaplin, M. G., Peng, S., Cho, K. and Dai, H., 'Nanotube Molecular Wires as Chemical Sensors,' Science, Vol. 287, pp. 622-625, 2000 https://doi.org/10.1126/science.287.5453.622
  7. Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F. and Dai, H. J., 'Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers.' Nature, Vol. 395, pp. 878-881, 1998 https://doi.org/10.1038/27632
  8. Lefebvre, J., Lynch, J. F., Llaguno, M., Radosavljevic, M. and Johnson, A. T., 'Single-wall carbon nanotube circuits assembled with an atomic force microscope,' Appl. Phys. Lett., Vol. 75, No. 19, pp. 3014-3016, 1999 https://doi.org/10.1063/1.125218
  9. Rao, S. G., Huang, L., Setyawan, W. and Hong, S., 'Nanotube electronics: Large-scale assembly of carbon nanotubes,' Nature, Vol. 425, pp. 36-37, 2003 https://doi.org/10.1038/425036a
  10. Seo, H. W., Han, C. S., Choi, D. G., Kim, K. S. and Lee, Y. H., 'Controlled assembly of single SWNTs bundle using dielectrophoresis,' Microelectronic Eng., Vol. 81, pp 83-89, 2005 https://doi.org/10.1016/j.mee.2005.04.001
  11. Javey, A., Guo, J., Wang, Q., Lundstrom, M. and Dai, H., 'Ballistic carbon nanotube field-effect transistors,' Nature, Vol. 424, pp. 654-657, 2003 https://doi.org/10.1038/nature01797
  12. Martel, R., Schmidt, T., Shea, H. R., Hertel, T. and Avouris, Ph., 'Single- and multi-wall carbon nanotube field-effect transistors,' Appl. Phys. Lett., Vol. 73, No. 17, pp 2447-2449, 1998 https://doi.org/10.1063/1.122477