• Title/Summary/Keyword: Optical and structural properties

Search Result 936, Processing Time 0.028 seconds

Department of Nano Semiconductor, Korea Maritime University (RF-스퍼터링의 파워변화에 따른 플라스틱 기판 위에 증착된 ZnO박막의 구조적, 광학적 특성)

  • Kim, Jun-Je;Kim, Hong-Seung;Lee, Joo-Young;Lee, Jong-Hoon;Lee, Da-Jung;Lee, Won-Jae;Shan, F.K.;Cho, Chae-Ryong;Kim, Jin-Hyuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.214-215
    • /
    • 2008
  • Zinc-oxide(ZnO) films were deposited on PC(polycarboanate) and PES(polyethersulphone) substrates by using RF(radio-frequency)sputter with various rf sputtering Power at a room temperature. The effects of rf sputtering Power on the structural and optical properties of ZnO films were investigated by using atomic force microscopy, X-ray diffraction, and UV spectrophotometer. The most excellent structural and properties of a ZnO film are obtained in the condition of an rf-power of 150 W. This film shows larger Grain size and lower surface roughness and a higher optical transmittance of over 80 % in the visible range than other films deposited in the different conditions of rf- power. Regardless of substrate types, The presence of a strong diffraction peak indicates that films have a (0 0 2) preferred orientation associated with the hexagonal phase.

  • PDF

Structural, Optical, and Electrical Properties of IGZO Thin Film Sputtered with Various RF Powers (RF 파워 변화에 따른 IGZO 박막의 구조적, 광학적, 전기적 특성)

  • Jin, Chang-Hyun;Kim, Hong-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.620-624
    • /
    • 2015
  • We have studied structural, optical and electrical properties of In-Ga-doped ZnO (IGZO) thin films. The IGZO thin films were deposited on the corning 1737 glass by RF magnetron sputtering method. The RF power in sputtering process was varied as 30, 50, 70, and 90 W respectively. All of the IGZO thin films transmittance in the visible range (400 nm ~ 800 nm) was above 83%. XRD analysis showed the IGZO thin films amorphous structure of the thin films without any peak. And also IGZO thin film have low resistivity ($1.99{\times}10^{-3}{\Omega}cm$), high carrier concentration ($6.4{\times}10^{20}cm^{-3}$), and mobility ($10.3cm^2V^{-1}s^{-1}$). By the studies we found that IGZO transparent thin film can be used as optoelectronic material and introduced application possibility for future electronic devices.

The Influence of Substrate Temperature on the Structural and Optical Properties of ZnS Thin Films (기판온도가 ZnS 박막의 구조 및 광학적 특성에 미치는 영향)

  • Hwang, Dong-Hyun;Ahn, Jung-Hoon;Son, Young-Guk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.760-765
    • /
    • 2011
  • Znic sulfide (ZnS) thin films were deposited on glass substrates by radio frequency magnetron sputtering. The substrate temperature varied from room temperature (RT) to $500^{\circ}C$. The structural and optical properties of ZnS films were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive analysis of X-ray (EDAX) and UV-visible transmission spectra. The XRD analyses reveal that ZnS films have cubic structures with (111) preferential orientation, whereas the diffraction patterns sharpen with the increase in substrate temperatures. The FESEM images indicate that ZnS films deposited at $400^{\circ}C$ have nano-sized grains with a grain size of ~ 67 nm. Then films exhibit relatively high transmittance of 80% in the visible region, with an energy band gap of 3.71 eV. One obvious result is that the energy band gap of the film increases with increasing the substrate temperatures.

Transient Behaviors of ZnO Thin Films on a Transparent, Flexible Polyethylene Terephthalate Substrate

  • Kim, Yongjun;Lee, Hoseok;Yi, Junsin;Noh, Jinseo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.179.1-179.1
    • /
    • 2015
  • Thickness-dependent electrical, structural, and optical properties of zinc oxide (ZnO) thin films on polyethylene terephthalate (PET) substrates were investigated in the very thin thickness range of 20 to 120 nm. A very unusual transition phenomenon, in which electrical resistance increases with an increase in film thickness, was observed. From structural and compositional analyses, this transition behavior was explained to arise from metallic Zn agglomerates dispersed in non-crystalline Zn-O matrix. It was unveiled that film thickness more than 80 nm is required for the development of hexagonal crystal structure of ZnO. ZnO films on PET substrates exhibited high optical transmittance and good mechanical flexibility in the thickness range. The results of this study would provide a valuable guideline for the design of ZnO thin films on organic substrates for practical applications.

  • PDF

Investigation of Structural and Optical Properties of III-Nitride LED grown on Patterned Substrate by MOCVD (Patterned substrate을 이용하여 MOCVD법으로 성장된 고효율 질화물 반도체의 광특성 및 구조 분석)

  • Kim, Sun-Woon;Kim, Je-Won
    • Korean Journal of Materials Research
    • /
    • v.15 no.10
    • /
    • pp.626-631
    • /
    • 2005
  • GaN-related compound semiconductors were grown on the corrugated interface substrate using a metalorganic chemical vapor deposition system to increase the optical power of white LEDs. The patterning of substrate for enhancing the extraction efficiency was processed using an inductively coupled plasma reactive ion etching system and the surface morphology of the etched sapphire wafer and that of the non-etched surface were investigated using an atomic force microscope. The structural and optical properties of GaN grown on the corrugated interface substrate were characterized by a high-resolution x-ray diffraction, transmission electron microscopy, atomic force microscope and photoluminescence. The roughness of the etched sapphire wafer was higher than that of the non-etched one. The surface of III-nitride films grown on the hemispherically patterned wafer showed the nano-sized pin-holes that were not grown partially. In this case, the leakage current of the LED chip at the reverse bias was abruptly increased. The reason is that the hemispherically patterned region doesn't have (0001) plane that is favor for GaN growth. The lateral growth of the GaN layer grown on (0001) plane located in between the patterns was enhanced by raising the growth temperature ana lowering the reactor pressure resulting in the smooth surface over the patterned region. The crystal quality of GaN on the patterned substrate was also similar with that of GaN on the conventional substrate and no defect was detected in the interface. The optical power of the LED on the patterned substrate was $14\%$ higher than that on the conventional substrate due to the increased extraction efficiency.