• 제목/요약/키워드: Optical Temperature Distribution Sensor Measurement

검색결과 13건 처리시간 0.031초

지중선로의 분포 온도 측정 시스템 개발 (Development of optical temperature distribution measurement system for Underground Power Transmission tunnel)

  • 이근양;송우성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.766-768
    • /
    • 1998
  • Optical Temperature Distribution measurement System (OTDS) is completely different from conventional electric point sensor in that it uses the optical fiber itself as the sensor. This new concept in temperature measuring system requires only one fiber to be laid. The use of optical fiber also gives the advantage of small diameter, light weight, explosion resistance, and electromagnetic noise resistance. The OTDS is a sensor which is capable of making a precise measurement over a wide range of areas using only a single optical fiber. Since current temperature sensors, such as the thermocouple, are only used to measure temperaturea of point, they are almost impractical for measuring a wider range because of the extremely high cost. In comparision with current sensors, the optical fiber distributed temperature sensor can make much quicker and more precise measurements at a comparatively low cost.

  • PDF

광섬유 센서를 이용한 실시간 온도 감시 시스템 (Real Time Temperature Monitoring System Using Optic Fiber Sensor)

  • 이창근;김영수;구명모;김봉기
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권12호
    • /
    • pp.209-216
    • /
    • 2010
  • 본 광 분포 온도 측정 시스템은 광섬유 자체를 온도 측정용 센서로 이용하는 시스템으로, 한 가닥의 광섬유만을 포설하여 포설된 주변 전체 온도를 수 천 점으로 측정이 가능한 시스템이다. 분포 측정의 경우 측정 점의 수를 많이 할 경우 측정점당 비용을 기존 센서의 비용 수준으로 절감 할 수 있으며 동시에 한 두 가닥의 광섬유로 전체 센서를 연결 할 수 있는 장점이 있다. 본 논문에서는 일반적으로 통신용으로 사용하는 광케이블 자체를 센서 (optical sensor cable)로 활용하여 최소한 매 1m 간격으로 센서 기능을 할 수 있는 특성을 이용함으로써 각 센서와 수많은 연결선들을 줄이고 시스템은 컴퓨터를 이용하여 데이터저장, 제어나 보관 등 데이터 관리가 용이하며, 실시간 온도 변화에 따른 온도 이력정보를 이용한 실시간 온도 모니터링 시스템을 구축한다.

Winding Temperature Measurement in a 154 kV Transformer Filled with Natural Ester Fluid

  • Kweon, Dongjin;Koo, Kyosun
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.156-162
    • /
    • 2013
  • This paper measures the hot spot temperatures in a single-phase, 154 kV, 15/20 MVA power transformer filled with natural ester fluid using optical fiber sensors and compares them with those calculated by conventional heat run tests. A total of 14 optical fiber sensors were installed on the high-voltage and low-voltage windings to measure the hot spot temperatures. In addition, three thermocouples were installed in the transformer to measure the temperature distribution during the heat run tests. In the low-voltage winding, the hot spot temperature was $108.4^{\circ}C$, calculated by the conventional heat run test. However, the hot spot temperature measured using the optical fiber sensor was $129.4^{\circ}C$ between turns 2 and 3 on the upper side of the low-voltage winding. Therefore, the hot spot temperature of the low-voltage winding measured using the optical fiber sensor was $21.0^{\circ}C$ higher than that calculated by the conventional heat run test.

빌딩표면에 분포된 온도를 측정하기 위한 광섬유 BOTDA센서의 적용 (Application of fiber optic BOTDA sensor for measuring the temperature distributed on the surfaces of a building)

  • Kwon, Il-Bum;Kim, Chi-Yeop;Park, Man-Yong
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.505-510
    • /
    • 2002
  • We have focused on the development of a fiber optic BOTDA (Brillouin Optical Time Domain Analysis) sensor system in order to measure temperature distributed on large structures. Also, we present a feasibility study of the fiber optic sensor to monitor the distributed temperature on a building construction. A fiber optic BOTDA sensor system, which has a capability of measuring the temperature distribution, attempted over several kilometers of long fiber paths. This simple fiber optic sensor system employs a laser diode and two electro-optic modulators. The optical fiber of the length of 1400 m was installed on the surfaces of the building. The change of the distributed temperature on the building construction was well measured by this fiber optic sensor. The temperature changed normally up to 4℃ through one day.

  • PDF

드론을 이용한 안면도 상공 대기경계층내의 미세먼지 연직분포 및 Flux 측정 (Vertical Aerosol Distribution and Flux Measurement in the Planetary Boundary Layer Using Drone)

  • 김희상;박용희;김우영;은희람;안강호
    • 한국입자에어로졸학회지
    • /
    • 제14권2호
    • /
    • pp.35-40
    • /
    • 2018
  • Vertical particle size distribution, total particle concentration, wind velocity, temperature and humidity measurement was performed with a drone. The drone was equipped with a wind sensor, house-made optical particle count(Hy-OPC), condensation particle counter(Hy-CPC), GPS, Temperature, Relative Humidity, Pressure and communication system. Base on the wind velocity and the particle size vertical distribution measurement with drone, the particle mass flux was calculated. The vertical particle distribution showed that the particle number concentration was very strongly correlated with the relative humidity.

온도 모니터링을 위한 광섬유 센서와 온도센서 배열 케이블의 비교 연구 (A Study on the Comparison between an Optical Fiber and a Thermal Sensor Cable for Temperature Monitoring)

  • 김중열;김유성;송윤호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1100-1109
    • /
    • 2006
  • In this study, two different technologies which can measure temperature simultaneously at many points are introduced. One is to use a thermal sensor cable that is comprised of addressable thermal sensors connected in parallel within a single cable. The other is to use an optic fiber with Distributed Temperature Sensing (DTS) system. The difference between two technologies can be summarized as follows. A thermal sensor cable has a concept of 'point sensing' that can measure temperature at accurate position of a thermal sensor. So the accuracy and resolution of temperature measurement are up to the ability of the thermal sensor. Whereas optic fiber sensor has a concept of 'distributed sensing' because temperature is measured by ratio of Stokes and anti-Stokes component intensities of Raman backscatter that is generated when laser pulse travels along an optic fiber. It's resolution is determined by measuring distance, measuring time and spatial resolution. The purpose of this study is that application targets of two temperature measurement techniques are checked in technical and economical phases by examining the strength and weakness of them. Considering the functions and characteristics of two techniques, the thermal sensor cable will be suitable to apply to the assessment of groundwater flow, geothermal distribution and grouting efficiency within 300m distance. It is expected that the optic fiber sensor can be widely utilized at various fields (for example: pipe line inspection, tunnel fire detection, power line monitoring etc.) which need an information of temperature distribution over relatively long distance.

  • PDF

분포온도 계측을 위한 광파이버 온도센서 시스템에 관한 연구 (The study on the fiber optic sensor for the distributed temperature measurement)

  • 이광진;최성구;노도환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1746-1749
    • /
    • 1997
  • A distributed optical fiber temperature sensor can continually monitor the measurand at every point along of its fiber length. It is based on OTDR technics which used extreamlly weak backward scattered light called Raman scattering. When the Pulsed high intensity laser light injected into the optical fiber there are several kind of backscattered light such as Rayleigh, Stokes, and anti-Stokes, etc. caused by impurities molecular vibrations. The temperature distribution is derived form the intensity ratio Raman scatted light-Stokes versus anti-Stokes-and the time function between light injection and signal detection. It is shown that the priniciple of distributed sensing, the system desing, and the result of experiments.

  • PDF

154kV 전력용 변압기의 온도분포에 관한 연구 (The Study on the Temperature Distribution for 154kV Power Transformers)

  • 우정욱;구교선;곽주식;김경탁;권동진
    • 조명전기설비학회논문지
    • /
    • 제25권9호
    • /
    • pp.56-61
    • /
    • 2011
  • The temperature of power transformers is very important factor for power system operation in substation because load capacity and limited lifetime of power transformers are determined by winding temperature. Also, The temperature of power transformers varies with the structure, capacity, operation condition and manufacturers. Thus, it is necessary for temperature distribution to be exactly investigated because of efficient load management and prediction of limited lifetime. Nevertheless, there was no case of analysis as well as measurement of the temperature of power transformers. In this paper, we manufactured the 154kV standard power transformer for the test. And we measured the temperature by the heat run test and analyzed the temperature distribution of transformer.

Raman 역산란광을 이용한 온도분포 계측특성 (Distributed Temperature Measurement Based on Raman Backscattering Light)

  • 김요희;오상기;박해수;이한철;노종대
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 E
    • /
    • pp.2447-2449
    • /
    • 1999
  • This paper presents a distributed temperature sensor which uses a multimode optical fiber. The temperature distribution is derived from the intensity of the Raman back scattering light. Testing the sensors on measurement length of 2km of this system shows good temperature characteristics of the heated/cooled section. These performance will useful to design such as monitoring abnormal temperature rise of electric facilities.

  • PDF

형광 나노 포러스 박막을 이용한 표면 온도 센서의 제작 및 성능 연구 II (Fabrication and Performance Investigation of Surface Temperature Sensor Using Fluorescent Nanoporous Thin Film II)

  • 김현정;유재석;박진일
    • 설비공학논문집
    • /
    • 제25권12호
    • /
    • pp.674-678
    • /
    • 2013
  • We present a non-invasive technique to the measure temperature distribution in nano-sized porous thin films by means of the two-color laser-induced fluorescence (2-LIF) of rhodamine B. The fluorescence induced by the green line of a mercury lamp with the makeup of optical filters was measured on two separate color bands. They can be selected for their strong difference in the temperature sensitivity of the fluorescence quantum yield. This technique allows for absolute temperature measurements by determining the relative intensities on two adequate spectral bands of the same dye. To measure temperature fields, Silica (SiO2) nanoporous structure with 1-um thickness was constructed on a cover glass, and fluorescent dye was absorbed into these porous thin films. The calibration curves of the fluorescence intensity versus temperature were measured in a temperature range of $10-60^{\circ}C$, and visualization and measurement of the temperature field were performed by taking the intensity distributions from the specimen for the temperature field.