• Title/Summary/Keyword: Operation timing

Search Result 488, Processing Time 0.029 seconds

Early Resurfacing Using Gastrocnemius Muscle Flap Transposition for Degloving Injury with Exposure of Proximal Tibia (근위부 경골 노출을 동반한 벗겨진 손상의 장딴지 근육 피판을 이용한 조기 피복 치험례)

  • Jeong, Hii Sun;Lee, Hye Kyung
    • Journal of Trauma and Injury
    • /
    • v.21 no.2
    • /
    • pp.140-143
    • /
    • 2008
  • Degloving injuries result from the tangential force against the skin surface, with resultant separation of the skin and the subcutaneous tissue from the rigid underlying muscle and fascia. These injuries are associated with extensive soft tissue loss and occasionally with exposure of bone, and they require reconstructive modality for resurfacing and successful rehabilitation that considers the vascular anatomy and the timing of the operation. A 19-year-old male patient was transferred to our facility with degloving injury extending from the lower third of the right thigh to the malleolar area. The tibial bone was exposed to a size of $2{\times}3.5cm^2$ on the upper third of the lower leg at the posttraumatic third day. The exposed soft tissue was healthy, and the patient did not have any other associated disease. At the posttraumatic sixth day, one-stage resurfacing was performed with a medial gastrocnemius muscle flap transposition for the denuded bone and a split-thickness skin graft for the entire raw surface. The transposed gastrocnemius muscle attained its anatomical shape quickly, and the operating time was relatively short. No transfusion was needed. This early reconstruction prevented the accumulation of chronic granulation tissue, which leads to contracture of the wound and joint. The early correction of the gastrocnemius muscle flap transposition made early rehabilitation possible, and the patient recovered a nearly full range of motion at the injured knee joint. The leg contour was almost symmetric at one month postoperatively.

Clinical Analysis of Intraoperative Rupture of Cerebral Aneurysms (수술 중 뇌동맥류 파열에 대한 임상 분석)

  • Baek, Won-Cheol;Koh, Hyeon-Song;Kim, Youn
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.sup1
    • /
    • pp.73-78
    • /
    • 2001
  • Objective : Intraoperative rupture of an intracranial aneurysm can interrupt a microsurgical procedure and jeopardize the patient's chance to favorable outcome. The purpose of this study was to analyse and evaluate intraoperative aneurysmal rupture and render ideal prevention and management to intraoperative rupture. Patients and Methods : The authors retrospectively analysed the results of 609 patients who underwent cerebral aneurysm surgery from January 1991 to December 2000. Results : 1) Intraoperative aneurysmal rupture occurred in 73 of 609 consecutive aneurysm surgery, so the incidence was about 12.0% and it was relatively lower than other reports. 2) Aneurysms arising from anterior communicating artery appeared more prone to intraoperative rupture. 3) The size of aneurysm and timing of operation didn't influence intraoperative aneurysmal rupture and temporary clipping didn't reduce the incidence of intraoperative aneurysmal rupture. 4) Intraoperative aneurysmal rupture occured during three specific periods : (1) dissection stage in 61%, (2) clip application stage in 29 %, (3) predissection stage in 10%. 5) In the patients with intraoperative aneurysmal rupture, surgical outcome was relatively good and there was no significant difference in outcome compared with unruptured group. Conclusion : Our suggestion for prevention methods of intraoperative aneurysmal rupture are as follows : 1) minimal brain retraction, 2) sharp and careful aneurysmal neck dissection, 3) gentle clipping with proper clip selection etc. Management methods after intraoperative aneurysmal rupture are as follows : 1) strong aspiration of bleeding point, 2) rapid application of temporary and/or tentative clip, 3) following rapid dissection of neck and proper clip application, 4) use of encircling clip etc.

  • PDF

A Study on the Design of FFT Processor for UWB Ultrafast Wireless Communication Systems (UWB 초고속 무선통신 시스템을 위한 FFT 프로세서 설계에 관한 연구)

  • Lee, Sang-Il;Chun, Young-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2140-2145
    • /
    • 2008
  • We design and synthesize a 128-point FFT processor for multi-band OFDM, which can be applied to a UWB transceiver. The structure of a 128-point FFT processor is based on a Radix-2 FFT algorithm and a R2SDF pipeline architecture. The algorithm is efficiently modeled in VHDL and the result is simulated using Modelsim. Finally, they are synthesized on Xilinx Vertex-II FPGA, and an operational frequency of 18.7MHz has been obtained. It is expected that the proposed 128-point FFT processor can be applied to an entire FFT block as one of parallel processed FFTs. In order to obtain the enhanced maximum frequency of operation, we design the FFT module consisting of four 128-point FFT processors for parallel process. As a result, we achieve the performance requirement of computing the FFT module in multi-band OFDM symbol timing in 90nm ASIC process.

Case Study on AUTOSAR Software Functional Safety Mechanism Design: Shift-by-Wire System (AUTOSAR 소프트웨어 기능안전 메커니즘 설계 사례연구: Shift-by-Wire 시스템)

  • Kum, Daehyun;Kwon, Soohyeon;Lee, Jaeseong;Lee, Seonghun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.267-276
    • /
    • 2021
  • The automotive industry and academic research have been continuously conducting research on standardization such as AUTOSAR (AUTomotive Open System ARchitecture) and ISO26262 to solve problems such as safety and efficiency caused by the complexity of electric/electronic architecture of automotive. AUTOSAR is an automotive standard software platform that has a layered structure independent of MCU (Micro Controller Unit) hardware, and improves product reliability through software modularity and reusability. And, ISO26262, an international standard for automotive functional safety and suggests a method to minimize errors in automotive ECU (Electronic Control Unit)s by defining the development process and results for the entire life cycle of automotive electrical/electronic systems. These design methods are variously applied in representative automotive safety-critical systems. However, since the functional and safety requirements are different according to the characteristics of the safety-critical system, it is essential to research the AUTOSAR functional safety design method specialized for each application domain. In this paper, a software functional safety mechanism design method using AUTOSAR is proposed, and a new failure management framework is proposed to ensure the high reliability of the product. The AUTOSAR functional safety mechanism consists of memory partitioning protection, timing monitoring protection, and end-to-end protection. The fault management framework is composed of several safety SWCs to maintain the minimum function and performance even if a fault occurs during the operation of a safety-critical system. Finally, the proposed method is applied to the Shift-by-Wire system design to prove the validity of the proposed method.

Orbital floor fracture repair with implants: a retrospective study

  • Lee, Yong Jig
    • Archives of Craniofacial Surgery
    • /
    • v.22 no.4
    • /
    • pp.177-182
    • /
    • 2021
  • Background: Although prompt surgery after an orbital fracture is preferable, the actual timing of surgery in real-world settings varies. Therefore, this study investigated the outcomes of implant surgery for inferior orbital wall fractures by comparing three groups according to the time interval between the injury and surgery. Methods: A retrospective review was conducted of patients' medical charts and initial computed tomography images from 2009 to 2020. The time to treatment was chosen by patients or their guardians based on the patients' comorbidities and the physician's explanation. The patients were divided into three groups according to the time of surgery (group 1: 3-7 days, group 2: 8-14 days, group 3: 15 or more days). Data were collected on age, the time interval until surgery, the dimensions of the defect, the operation time, the follow-up period, and the postoperative paresthesia score (ranging from 0 to 10). The outcomes were evaluated using a 4-point scale: 4=good (no complications), 3=fair (no subjective symptoms), 2=poor (remaining paresthesia), and 1=very poor (strabismus and/or enophthalmos). Results: The study included 85 patients with unilateral fractures who underwent surgery from 3 to 93 days after injury. The overall score distribution of the surgical outcomes was as follows: good=63, fair=7, poor=6, and very poor=9. The three groups showed no significant differences in the transverse dimension of the injury (p=0.110) or the anteroposterior dimension (p=0.144). In groups 1, 2, and 3, the postoperative outcome scores were 3.84±0.37, 3.63±0.87, and 2.93±1.33 (p=0.083), and the percentage of patients with good outcomes was 84%, 81.25%, and 57.14%, respectively. Conclusion: Performing surgery using an artificial implant within 2 weeks of the injury showed better outcomes and fewer postoperative complications than when treatment was delayed.

A Study on PCS for ML-Based Electrical Propulsion System (ML 기반의 전기추진시스템을 위한 PCS에 관한 연구)

  • Lee, Jong-Hak;Lee, Hun-Seok;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1025-1031
    • /
    • 2019
  • This study proposes a PCS that enables efficient operation of seawater pumps for ships by implementing ML-based algorithms. Seawater temperature, RPM and power consumption data are acquired from two ships with PCS, analyzed with regression analysis method, and new algorithms are presented. Using the algorithms presented, Ship A saved about 36% compared to the PCS application, and ML-based algorithms in certain sea temperatures of 19 to 27 degrees Celsius and above 32 degrees Celsius were about 1% lower than Ship A's PCS. Ship B saved about 50% compared to PCS not applied, and about 2% more than Ship B's PCS in waters above $19^{\circ}C$, a specified sea temperature. The derived data can be used to suggest the optimum pump speed and sea route. In addition, the trend of acquired data can be used to infer the performance of the pump or the timing of elimination of the MGPS when efficiency becomes poor.

Efficient Arc Detection and Control Method in Electro-discharge Machining (방전가공기의 효율적인 아크 검출과 제어방법)

  • Park, Yang-Jae
    • Journal of Digital Convergence
    • /
    • v.16 no.12
    • /
    • pp.309-315
    • /
    • 2018
  • In this paper, propose an efficient arc detection and control method to achieve fast machining speed, improved precision and surface roughness in discharge machining, especially for carbide and hard material processing and metal processing using discharge phenomenon as energy. A single discharge waveform is divided into three sections of Td (Time-Delay), Ton (Time-on) and Toff (Time-off) and the gate control timing is simulated using the HDL language. In this paper, we analyze the effect of the gap between the electrode and the workpiece on the machining results by determining the operation of the servo mechanism by sampling the Td section through the comparator circuit. As a result of the analysis, the Td section of the formed waveform was more precisely sampled at a high speed and the results were improved when applied to the gap control between the electrode and the workpiece.

Study on Full Load Operation Characteristics and Thermal Efficiency of 1.4L Turbo CNG SI Engine (1.4L급 터보 CNG SI엔진의 전부하 운전 특성 및 열효율에 대한 연구)

  • Bae, Jong-Won;Park, Cheol-Woong;Lee, Jeong-Woo;Kim, Yong-Rae;Kim, Chang-Gi;Lee, Sun-Youp;Lee, Jin-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.34-39
    • /
    • 2018
  • Natural gas is attracting attention as an alternative to existing fossil fuels. Natural gas has a high octane number. Therefore, knocking does not occur even if the compression ratio is increased, so that the thermal efficiency and the output can be improved. And it is relatively easy to apply the natural gas supply system to the internal combustion engine hardware system. In this study, a gasoline direct injection turbo engine was converted into a natural gas port injection type turbo engine. Therefore, the combustion and performance of the engine are measured and compared comprehensively in the region where the turbo operates.

Syngas/Diesel Dual Fuel Combustion in a Compression Ignition Engine with Different Composition Ratios of Syngas and Compression Ratios (합성가스/디젤 혼소압축착화 엔진의 합성가스 혼합비와 압축비에 따른 연소 및 배출가스 특성)

  • Lee, Junsun;Chung, Tahn;Lee, Yonggyu;Kim, Changup;Oh, Seungmook
    • Journal of ILASS-Korea
    • /
    • v.24 no.1
    • /
    • pp.35-42
    • /
    • 2019
  • Syngas is widely produced by incomplete combustion of coal, water vapor, and air (oxygen) in a high-temperature/high-pressure gasifier through a coal-gasification process for power generation. In this study, a simulation syngas which was mainly composed of $H_2$, CO, $CO_2$, and $N_2$ was fueled with diesel. A modified single cylinder compression ignition (CI) engine is equipped with intake port syngas supply system and mechanical diesel direct injection system for dual fuel combustion. Combustion and emission characteristics of the engine were investigated by applying various syngas composition ratios and compression ratios. Diesel fuel injection timing was optimized to increase indicated thermal efficiency (ITE) at the engine speed 1,800 rpm and part load net indicated mean effective pressure ($IMEP_{net}$) 2 to 5 bar. ITE of the engine increased with the $H_2$ concentration, compression ratio and engine load. With 45% of $H_2$ concentration, compression ratio 17.1 and $IMEP_{net}$ 5 bar, ITE of 41.5% was achieved, which is equivalent to that of only diesel fuel operation.

Numerical analysis on performances and emission characteristics of HCCI engine fueled with hydrogen added biogas (반응 메커니즘 기반의 수소 첨가 바이오가스 HCCI 엔진 성능 및 배출가스에 대한 수치 해석적 연구)

  • Park, Jungsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.41-46
    • /
    • 2018
  • In this research, numerical analysis was performed to determine the effects of hydrogen on biogas combustion for homogeneous charged compression ignition (HCCI) engines. The target engine specifications were a 2300cc displacement volume, 13:1 compression ratio, 15kW of electricity, and 1.2 bar boost pressure. The engine speed was fixed to 1800rpm. By varying the excess air ratio and hydrogen contents, the cylinder pressure, nitric oxide, and carbon dioxide were measured as a function of the hydrogen contents. According to preliminary studies related to the reaction mechanism for methane combustion and oxidation, a GRI 3.0 mechanism as the base mechanism was selected for HCCI combustion calculations describing the detailed reaction mechanism. By adding hydrogen, NO was increased while $CO_2$ was decreased. The cylinder pressure was also increased, having advanced timing for the maximum cylinder pressure and pressure rise region. Furthermore, lean operation limits were extended by adding hydrogen to the HCCI engine.