• Title/Summary/Keyword: Operation layer

Search Result 1,096, Processing Time 0.028 seconds

Compact Software Design and Implementation of IEEE802.15.4 and ZigBee

  • Thai, Pham Ngoc;Que, Victoria;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.6
    • /
    • pp.835-844
    • /
    • 2008
  • ZigBee devices are limited in resources especially on power and computational capacity but also require real-time operation at MAC layer. Therefore, it is important to take those requirement into consideration of system software design. In this paper, we proposed a compact system software design to support simultaneously ZigBee and IEEE802.15.4. The design strictly respects the resource and real-time constraints while being optimized for specific functions of both Zigbee and IEEE802.15.4. Various evaluations are done to show significant metrics of our design.

  • PDF

Cutting Characteristics Comparison between CBN and Coated CBN Tools in Turning SCM440 (SCM440의 선삭가공시 CBN공구와 CBN코팅공구의 절삭특성 비교)

  • Bang, H.I.;Shin, H.G.;Oh, S.H.;Kim, T.Y.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.31-37
    • /
    • 2011
  • The purpose of this study is to investigate cutting characteristics and wear behavior in SCM440 steel with different cutting tools, CBN(Cubic Boron Nitride) and coated CBN. During the test coated CBN tool especially with TiAlN showed better wear resistance behavior than orginal CBN tools. In the interrupted cutting condition, axial groove affected tool surface with impact force during the turning operation. For advantageous turning parameter in the interrupted process it is recommendable that lower speed. Also surface roughness showed better behavior in the coated CBN tool conditions than normal CBN conditions. Mainly this is caused by reduced friction between material and tool surface with coated layer.

Optimization of GaAs/AIGaAs depleted optical thyristor structure for lower depletion voltage (Depleted Optical Thyristor의 공핍전압에 관한 연구)

  • Choi, Woon-Kyung;Kim, Doo-Geun;Choi, Young-Wan;Lee, Seok;Woo, Duk-Ha;Byun, Young-Tae;Kim, Jae-Heon;Kim, Sun-Ho
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.220-221
    • /
    • 2003
  • We optimized the structure of a fully depleted optical thyristor (DOT) to achieve the faster switching speed and the lower power consumption by the depletion of charge at the lower negative voltage. The fabricated optical thyristor shows sufficient nonlinear s-shape I-V characteristics with the switching voltage of 2.85 V and the complete depletion voltage of -8.73 V. In this paper, using a finite difference method (FDM), we calculate the effects of parameters such as doping concentration and thickness of each layer to determine the optimized structure in the view of the fast and low-power-consuming operation.

  • PDF

Improvement of LECEEP Protocol through Dual Chain Configuration in WSN Environment(A-LECEEP, Advanced LEACH based Chaining Energy Efficient Protocol) (WSN 환경에서 이중체인 구성을 통한 LECEEP 프로토콜 개선(A-LECEEP))

  • Kim, Chanhyuk;Kwon, Taewook
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1068-1075
    • /
    • 2021
  • Wireless sensor network (WSN) can be usefully used in battlefields requiring rapid installation and operation by enabling surveillance and reconnaissance using small sensors in areas where any existing network infrastructure is not formed. As WSN uses battery, energy efficiency acts as a very important issue in network survivability. Layer-based routing protocols have been studied a lot in the aspect of energy efficiency. Many research selected LEACH and PEGASIS protocols as their comparison targets. This study examines the two protocols and LECEEP, a protocol designed by combining their advantages, and proposes a new protocol, A-LECEEP, which is more energy efficient than the others. The proposed protocol can increase energy efficiency compared to the existing ones by eliminating unnecessary transmissions with multiple chains configuration.

Evaluation of thermal conductivity in REBCO coated conductor

  • Yong-Ju, Hong;Sehwan, In;Hyobong, Kim;Hankil, Yeom
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.78-83
    • /
    • 2022
  • REBCO coated conductors are widely used for HTS power application, high magnetic field magnet application, and etc. A thermal stability of the REBCO conductor is essential for the operation of HTS-based device, and thermal conductivities of the conductor are relevant parameters for modeling cryogenic heat transfer. REBCO conductors consist of a REBCO layer, copper layers for electrical stabilization and a hastelloy substrate. At cryogenic temperature, thermal conductivity of copper and silver strongly depend on the purity of the material and the intensity of the magnetic field. In this study, thermal conductivities of the laminated composite structure of REBCO conductor are evaluated by using the thermal network model and the multidimensional heat conduction analysis. As a result, the thermal network model is applicable to REBCO conductors configured in series or parallel alone and multidimensional heat conduction analysis is necessary for complex cases of series and parallel configuration.

Electrolyte-gated Transistors for the Next-generation Smart Electronics (차세대 스마트 전자를 위한 전기화학 트랜지스터)

  • Kwon, Hyeok-jin;Kim, Se Hyun
    • Prospectives of Industrial Chemistry
    • /
    • v.23 no.2
    • /
    • pp.1-11
    • /
    • 2020
  • In this report, we summarize recent progress in the development of electrolyte-gated transistors (EGTs) for various printed electronics. EGTs, employing a high capacitance electrolyte as gate dielectric layer in transistors, exhibits increasing of drive current, lowering operation voltage, and new transistor architectures. While the use of electrolytes in electronics goes back to the early days of silicon transistors, the new printable, fast-responsive polymer electrolytes are expanding their range of applications from printable and flexible digital circuits to various neuromorphic devices. This report introduces the structure and operating mechanism of EGT and reviews key developments in electrolyte materials used in printed electronics. Additionally, we will look at various applications with EGTs that are currently underway.

Design and fabrication of a novel multilayer bandpass filter with high-order harmonics suppression using parallel coupled microstrip filter

  • Fathi, Esmaeil;Setoudeh, Farbod;Tavakoli, Mohammad Bagher
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.260-273
    • /
    • 2022
  • This study presents a novel multilayer structure of parallel coupled-line bandpass filtercentered at 2.42 GHz with a fractional bandwidth value of approximately 19.4%. The designed filter can suppress harmonics with an appropriate frequency response by incorporating different techniques based on the multilayer technique. A combination of different techniques such as radial microstrip stubs and defected ground structure (DGS) and defected microstrip structure techniques are employed to suppress harmonics up to 5f0. These techniques are used in two layers to suppress up to 5f0. In addition, in this study, the effects of different parameters, such as the width of slot-line DGS, the angle of diagonal line slots in the upper layer, and the air gap between the two layers on the filter performance, are investigated. To verify the correct circuit operation, the designed filter is implemented and tested. The measurement results of the proposed filter are compared with the simulation results.

Effects of Operation Parameters on Pollutants Removal in a Lab-Scale Multi-Layered Soil Filtration System (하천 수질정화를 위한 실험실 규모 다단식 토양여과 시스템에서 오염물질 제거에 미치는 운전인자의 영향)

  • Won, Se-Yeon;Ki, Dong-Won;Yoon, Min-Hyeok;Maeng, Sung-Kyu;Ahn, Kyu-Hong;Park, Joon-Hong;Song, Kyung-Guen
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.2
    • /
    • pp.91-96
    • /
    • 2012
  • In this study we investigated the effects of operational parameters of a multi-layered soil filtration (filter depth, filtration velocity, and continuous/intermittent operation) on removal of pollutants in river water. As filter depth increased removal of all the pollutants (COD, TP, TN, and $NH_4$-N) was increased because the increase in filter depth increased in contact time between media and pollutants. The removal of TP and $NH_4$-N more increased with the increase in filter depth, comparing to the biological COD removal which was performed only in the top layer, since the removal mechanism of TP and $NH_4$-N was physicochemical process occurring throughout the whole layers. However, the reduction in filtration velocity resulted in decrease of removal all the pollutants removal due to shorter retention time. Biological COD removal was more influenced with the reduction in filtration velocity (longer retention time), than the removal of TP and $NH_4$-N. Because biological process was occurred only in the top layer which has relatively shorter retention time, comparing with physicochemical process occurred throughout whole media. Therefore, it is desirable that the operation parameters be controlled toward increasing retention time, in order to achieve efficient pollutants removal. The change in operation mode (continuos vs. intermittent operations) did not provide significant effects on the pollutant treatment efficiency by the multi-layered soil filtration system. Our findings suggest that for stable long-term operation it should be considered keeping conditions for biological activity and accelerating clogging.

The Construction of GIS-based Flood Risk Area Layer Considering River Bight (하천 만곡부를 고려한 GIS 기반 침수지역 레이어 구축)

  • Lee, Geun-Sang;Yu, Byeong-Hyeok;Park, Jin-Hyeog;Lee, Eul-Rae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • Rapid visualization of flood area of downstream according to the dam effluent in flood season is very important in dam management works. Overlay zone of river bight should be removed to represent flood area efficiently based on flood stage which was modeled in river channels. This study applied drainage enforcement algorithm to visualize flood area considering river bight by coupling Coordinate Operation System for Flood control In Multi-reservoir (COSFIM) and Flood Wave routing model (FLDWAV). The drainage enforcement algorithm is a kind of interpolation which gives to advantage into hydrological process studies by removing spurious sinks of terrain in automatic drainage algorithm. This study presented mapping technique of flood area layer considering river bight in Namgang-Dam downstream, and developed system based on Arcobject component to execute this process automatically. Automatic extraction system of flood area layer could save time-consuming efficiently in flood inundation visualization work which was propelled based on large volume data. Also, flood area layer by coupling with IKONOS satellite image presented real information in flood disaster works.

  • PDF

High Voltage Performance of the Electrical Double Layer Capacitor with Various Electrolytes (다양한 전해액을 적용한 전기이중층 커패시터의 고전압 특성 연구)

  • Kim, Jung Wook;Choi, Seung-Hyun;Kim, Jeom-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.2
    • /
    • pp.34-40
    • /
    • 2017
  • Electric double layer capacitors (EDLC: electric double layer capacitors) have drew attention as an energy storage device for the next generation because of their outstanding power capability and durability. But their usage is somewhat limited due to low energy density over secondary batteries. One of methods to improve the energy of EDLC is expanding the voltage window of cell operation by increasing the charge cut-off voltage. In this study, $SBP-BF_4$ (spirobipyrrolidinium tetrafluoroborate), $TEA-BF_4$ (tetraethylammonium tetraflouroborate) and $EMI-BF_4$ (1-ethyl-3-methylimidazolium tetrafluoroborate) in AN (acetonitrile) were selected to evaluate the possibility of application at high voltage environment. The LSV (linear sweep voltammetry) measurements showed that the 1.5M SBP-BF4/AN electrolyte was stable over a wide potential window and showed the best electrochemical performance compared to other combinations of electrolytes at high voltage environments (over 3.0 V). Furthermore, TMSP (tris(trimethylsilyl) phosphite) was applied to 1.5M SBP-BF4/AN in order to maintain stable performance at high voltage for the long period of time. The electrolyte with TMSP additive showed the capacity retention of 93% after 10,000 cycles at 3.3 V.