Journal of Korea Multimedia Society Vol. 11, No. 6. JUNE 2008(pp. 835-844)

Compact Software Design and Implementation
of IEEE802.15.4 and ZigBee

PHam Ngoc Thai', Victoria Que™, Won-Joo Hwang'™

ABSTRACT

ZigBee devices are limited in resources especially on power and computational capacity but also require
real-time operation at MAC layer. Therefore, it is important to take those reguirement into consideration
of system software design. In this paper, we proposed a compact system software design to support
simultaneously ZigBee and IEEE802.15.4. The design strictly respects the resource and real-time con-
straints while being optimized for specific functions of both Zigbee and IEEER02.15.4. Various evaluations

are done to show significant metrics of our design.

Key words: Sensor network, ZigBee, 802.15.4, design and implementation

1. INTRODUCTION

Known as the third wave in the computing para-
digms, ubiquitous computing {1] uses small de-
vices which can be embedded in objects or placed
anywhere in the environment to collect, process,
and deliver information wirelessly. The realization
of ubiquitous computing environment pushes for-
ward attention to wireless sensor network (WSN)
from research and industry fields [2]. WSN is com-
posed of small sensor nodes that have sensing, data
communication

processing and wireless

components. Being low cost and low maintenance,

# Corresponding Author : Won~Joo Hwang, Address :
(621-749) Obangdong, Gimhae, Gyeongnam, Korea, TEL
1 +82-55-320~3847, FAX: +82-55-322-6275, E-mail:
ichwang@inje.ac kr
Receipt date : Mar. 12, 2008, Approval date : June 30, 2008
" Dept. of Electronics and Telecommunication Engi-
neering, Inje Engineering Institute, Inje University,
South Korea.
(E-mail : thaipnt@yahoo.com)
** Dept. of Electronics and Telecommunication Engi-
neering, Inje Engineering Institute, Inje University,
South Korea.
(E-mail : tori_g81@yahoo.com)
Dept. of Information and Communications Engi-
neering, Inje Engineering Institute, Inje University,
South Korea.

Ht

WSN could be very appropriate in various applica-
tion areas such as surveillances, home control, and
battlefields. WSN testbeds and real-life applica-
tions have been started several years ago based
on various platforms [3,4]. However, it was not a
standard until June 2005 when ZigBee [5] is re~
leased as the first industrial standard for sensor
networks based on IFEE 802.15.4 [6). ZigBee en-
hances the functionality and interoperability of
IEEES802.15.4 by providing flexible and extendable
network topology. Furthermore, it is cost effective
and easy to install. ZigBee network can easily
adapt to topology changes caused by adding, re-
moving or failure of any network node.

According to the computational capacity and
power saving requirement of ZigBee network no-
des, design and implementation must be done care~
fully to efficiently support low-power and low~ ca—
pacity network nodes [7]. Software of such kind
of system must be compact, simple, power effi-
cient, small memory footprint, responsible in re-
al-time and modular for ease of extension.
However some current open source ZigBee stack
released for application development, for example
Chipcon Stack and openMac, do not completely
meet such requirements.



836 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 11, NO. 8, JUNE 2008

1.1 Problem Description

For the reason stated above, we conclude the
problems can should solved in this paper. Design
and implementation of ZigBee must consider the
constraints of real-time embedded network nodes.

Compact is an important required features of
stack. Software system design, of course, must be
optimized to fit low capacity device to save not on-
ly computational power but also power resources.

Timing is also a big issue for real-time
operation. In the 802.154, timing precision is need-
ed to accomplish back-off time of 320us. Timing
is usually done based on the integrated internal
clock of micro controller. Moreover, we need to
consider the memory constraints of the stack. To
fit different type of devices, Reduced Function
Device (RFD) and Full Function Device (FFD),
memory management function must consider dif-
ferent memory allocation schemes.

Regarding the requirement in heterogeneous
sensor network, a large number of different devices
will be developed to conform to different environ-
ment. The devices, hence, will be adapted in terms
of cost, power capacity and so on. Customization
of stack design to fit those requirements is also

a mandatory feature.

1.2 Paper Contributions

In this paper, we focus on the issues mentioned
and present a system design of full ZigBee em-
bedded software. The system is divided into sev-
eral modules for ease of
maintenance. It consists of ZigBee protocol stack,

extension and

operating system and application framework.

- Our design methodology aims to solve the
constraints of ZigBee system and concentrate on
a appropriate compact design for ZigBee. System
design is based on event—-driven architecture and
noen-preemptive multitasking single stack models
low~—capacity

to meet the real-time and

requirement. Hardware abstraction is done on

Hardware Abstraction Layer (HAL) which allows
adaptation of system over various type of hard-
ware platform.

- Moreover, this paper provides discussion of
the main problems in implementing IEEE 802.15.4/
ZigBee and offers solutions to overcome those
problems.

The remainder of the paper is organized as
follows. On section 2, we describe related works
on ZigBee and wireless personal area network and
our motivation. On Section 3, we describe how we
arrive to our implementation. We mention design
factors, architecture, as well as the functional
modules. Currently, we implemented the system
over ATMegal28l. and Chipcon CC2420 platform
[8]. On Section 4, we show test scenarios and re-
sults for the implemented protocol stack. Finally,
on Section 5, we conclude the paper.

2. RELATED WORKS AND MOTIVATION

The diagram for ZigBeel5] protocol stack is
shown in Fig. 1. It is composed of physical, MAC,
network and application layers. The IEEE 802.15.4
Standard defines the lower layers: Physical (PHY)

Application Layer

Application Framework

Application Zigbee Device Objects
Objects
Endpoint1- 246 Endpointd™,

H

T\ APSDE-SAP
Application Support Sublayer

APSDE- SAP

ZDO Management
Plane
!

- NLDE- SAP) &
T e
@
Network Layer E
) ]

Medium Access Controt Layer

/ J

oo, e —
T pD-SAP ] PLME-SAP
e ) Ny I _._.‘

Physical Layer

Fig. 1. MAC 802.15.4/ZigBee Protocol Stack



Compact Software Design and Implementation of IEEE802.15.4 and ZigBee 837

and Media Access Control (MAC) while the ZigBee
alliance defines the upper layers. Communication
between layer Application Objects and Zigbee
Device Object (ZDO) are based on Application
Sub-layer Data Entity SAP (APSDE-SAP) and
Application Sun-layer Management Entity SAP
(APSME-SAP). Functions of Network Layer are
exposed to upper layer through Network Layer
Data Entity SAP (NLDE-SAP) and Network
Layer Management Entity SAP (NLME-SAP).
Network layer accesses function of MAC layer
over MAC Common Part Sub-layer SAP
(MCPS-SAP) and MAC Sub-layer Management
Entity SAP (MLME-SAP). In the last layer,
Physical Layer exposes function over Physical
Layer Data SAP (PD-SAP) and Physical Layer
Management Entity SAP (PLME-SAP).

There are three different devices in ZigBee: the
coordinator, router and endpoint. Each has tasks
to perform in the network and particular
capabilities. It is important to identify these differ-
ences so as to save available resources on them.
For example, the memory on the coordinator may
be more than the end point, such differences should
be considered.

Presently, we can find several open releases of
ZigBee architecture and implementation. Some of
them appear to be not completely cooperating with
the prerequisite of an embedded ZigBee system.
For example, in the reference [9], a design and im-
plementation of a MAC 802.154 is presented. In the
reference [10], ZigBee software system Z-Stack
which is an open source protocol stack still has
some problems. Firstly, the separation between the
libraries of the MAC layer and ZigBee stack cre-
ates redundant codes in the system. By merging
common Library between them we can reduce soft-
ware size and complexity. Second, its memory al-
location mechanism uses variable size which can
cause memory partition and therefore degrade
memory access speed. Some other ZigBee project
suggests using TinyOS with NesC [11] on ZigBee

system. However, TinyOS seems to be too compli-
cated for a customizable sensor node. The macros
in NesC [12] cannot be reduced completely by us-
ing optimization tools. From [13], authors conclude
that motes and TinyOS are insufficient for IEEE
802.15.4 full functional device. They experienced a
far too slow data transfer between layers in
TinyOS.

3. COMPONENT DESIGN AND
IMPLEMENTATION

On this section, we will discuss the design of
the protocol stack. Problems in implementation and
our solution to overcome them are also depicted in
these sections.

The software system is divided into components
based on functional abstraction methodology. Fig.
2 represents the layered design architecture of
ZigBee stack. The system consists of following
components: Embedded Network Operating sys—
tem (ENOS), MAC IEEE802.154, ZigBee Stack.
ENOS provides scheduling, timer service and
memory management to ZigBee stack and all the
application components as a basic operating
system. It also provides a framework for all the
ZigBee application in the ZigBee Application
component. Application registers to the ZigBee
stack over generic interface without interrupt
ZigBee stacks. MAC IEEE802.154 is implementa-
tion component of IEEE802.154 standard. This

Fig. 2. ZigBee system architecture



838 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 11, NO. 6, JUNE 2008

component also uses functions of ENOS for all of
its operations.

Here after, we will present component in the
system and design and implementation issues re-
lated to specific those components.

3.1 Embedded Network Operating System-
ENOS

In any embedded system, operating system is
the most important component to take into account
because it greatly affects the system performance.
QOur design philosophy of ENOS leans toward a
compact, simple and appropriate for ZigBee
functions. Components in the ENOS include
Scheduler, Timer, Memory manager and Utils. A
simple Message Dispatching Framework (MDF) is
used support communication between tasks. We
describe these components and their design
considerations. The design of ENOS also considers
constraints of ZigBee stack: Customizability, tim-
ing and memory requirement. General comparison
between ENOS with TinyOS and uCOS is shown
in the Table 1 to give an overview of ENOS.

3.1.1 ENOS Scheduler

Timing is critical design aspect of embedded
sensor software. Delays can cause loss of data and
degradation of system performance. Especially in
ZigBee beacon-enabled network, all the nodes need
to be synchronized with PAN (Personalized Access
Network) coordinator to work properly. If a node
loses the synchronization, there is a possibility of
collision in the GTS (Guaranteed Time Slots), re~
sulting from the overlap of CAP (Contention

Table 1. Comparison of ENOS system with others

ENOS TinyOS uCOS
Infrastructure Ev‘ent— Ev.ent— Threading
Driven Driven
Fixed size, Static Fixed size,
Memory X .
Dynamic memory Dynamic
Real-time Yes Yes No

Access Period) with CFP {(Contention Free Period).
Timing requirement for tasks in the MAC 802.154
is for sending/receiving data and beacon synchro-
nization. For the stated reason, we designed a
two-level scheduling for ENOS scheduler. Periodic
task (PTask) is scheduled every a fixed interval
of time which is used for the critical tasks such
as CSMA/CA procedure in MAC 802.154. Periodic
tasks must terminate before the next activation.
Aperiodic task (ATask) is a non-periodic task.
There is no deadline for this kind of task. This task
is activated by the scheduler and terminate when-
ever it finishes. For each kind of task, ENOS sup-
ports a number of priorities. That number of prior-
ities should be considered adapted to specific re~
quirement of system. Firing periodically by a hard-
ware clock, periodic scheduling simply activates
the task with higher priority each time. For aperi-
odic task, multi-level scheduling is also applied
based on priority of the components. High priority
aperiodic task should be assigned to protocol task,
such as ZigBee. Applications should have low
priorities. Interrupt can preempt both aperiodic and
periodic task. Periodic task can also preempt aperi-
odic task but aperiodic task can not preempt any
task. This design strategy can guarantee the re-
al-time requirement of system and also reduce the
overhead caused by context switching.

Communications between ATasks and from
PTask to ATask are performed over MDF. ENOS
scheduler maintains a queue of all the messages,
and then message is dispatched to the appropriate
task. This framework is simple and well fitted to
ZigBee application framework

3.1.2. ENOS Timer

To efficiently utilize the priority of time critical
task and computation task, ENOS support two
types of timer, synchronous timer (Stimer) and
asynchronous timer (Atimer). Synchronous timer
will be activated immediately whenever it fire by
using onboard clock interrupt. These interrupt



Compact Software Design and implementation of IEEE802.15.4 and ZigBee 839

caltbacks a routine to activate those timers. Stimer
can provide precise timer, however time consumed
by this interrupt will affect the real-time feature
of system that is reason why we need to keep as
small as possible the number of Stimer. To do that,
for non-critical task, for example on ZigBee stack
or application layer, we should use Atimer.
Asynchronous timer when started generates a
message and sends to the destination task. This
approach can reduce the time consumption of timer
checking.

3.1.3 Memory management

Memory management component is necessary
for ZigBee stack component and applications.
Varied block size memory is usually used in some
embedded Z-Stack.

However, with a small size of memory, varied size

systems, for example
approach can cause the partition problem of the
memory. We use fixed block size memory in
ENOS. Memory management component supports
several base sizes considering the memory uti-
lization of system. For example, two base sizes are
always needed. One is message size which is used
for communication between tasks. The other one
is maximum frame size (128 bytes) which is used
for frames at MAC 802.15.4. To support custom-
izability of stack, memory management needs to
have a appropriate memory allocation scheme.
There are two type of memory in the ENOS. The
first type of memory is used at system level for
function of ENOS and communication between
components. This memory cannot be customized.
The second type of memory is used for operation
of application and ZigBee stack. This memory can
be customized regarding to profile of applications.

3.1.4 Hardware Abstraction Layer - HAL

HAL provides abstraction interface to access
hardware. Necessary abstraction can be added to
extend interface of system to other peripherals.
Currently, for ZigBee network nodes, we im-

plemented the required components: RF, LED,
Clock, UART and ADC. RF consists of functions
and interrupts which allows MAC 802.154 to re-
ceive/send message and sense channel. HAL mini-
mizes the change of system when porting to other
hardware platform.

3.1.5 Message Dispatching Framework - MDF

Design of MDF is similar with design used for
interprocess communication in the model operating
system. Message in the system has a unified for—
mat including {(task_Id, message_Id}. task_Id
identifies the task will receive the message. mes—
sage_Id identify the type of message. Message al-
so contains a fixed size of data for customized uses.
Messages are dispatched by sending directly to
message queues of the task identified in the
task_Id.

3.1.6 Interaction between components

In this section, we will detail the interactions be—
tween components described above following the
interactions shown in the Fig. 3.

At the arrow (1), Application Support Layer
component (APS) uses the Atimer in all its
operation. At arrow (2), Network component
(NWK) uses Atimer for all its operation. At the
arrow (3), MAC 802154 uses Stimer for its
operation. Stimer can provide realtime guarantee
for operation of MAC layer. At the arrow (4), ap-
plications access the ZigBee stack over a set of
APSDE-SAP and APSME-SAP. Because APS

Fig. 3. Interaction between ZigBee stack and
ENOS components.



840 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 11, NO. 6, JUNE 2008

and all other application work on independents
Atask, then their communication are done over
MDF. At the arrow (5), APS component access the
service of NWK component. This interface is com-
pletely detailed in the ZigBee Standard [5]. At the
arrow (6), Response/Data from NWK layer are
passed to upper layer. This communication between
NWK and APS is done over MDF. At the arrow
(7), NWK component send request regarding the
standard of 802.15.4 to the MAC. Those requests
are queued at MAC and processed priodically. At
the arrow (8), NWK component communicates with
MAC layer over MDF. At the arrow (9), Data or
Interrupt are generated by RF component.
Generated interrupt will queue an Atask in the peri~
odical task queue of MAC 802.15.4. That task will
be queued until the previous generated tasks are
processed. At the arrow (10), data or control pa-
rameters are sent to the tranceiver over the wrap-
ped function of RF. Arrow (11) shows Internal
hardware clock periodically generates interrupt to
perform the Stimer and the Pscheduler. At arrows
(12) and (14), Aperiodical Task Scheduler
(AScheduler) will manage the task of NWK, APS
and also all other application task. At arrow (13),
tasks of MAC 802.15.4 are performed by Periodic
Task Scheduler (PScheduler).

3.2 MAC IEEE802.15.4

Regarding the real-time requirement of MAC
layer, MAC 802.15.4 is designed in periodical task
paradigms. All the action in the MAC are Ptask.
Hence there are two important components in the
MAC layer. They are MAC_State which manages
the internal information and current state of MAC.
Task queue contains various queue of periodical
task including different level of priority and
Transactions.

Transactions contain the transactions generated
by upper layer over two SAPs (MCPS~-SAP and
MLME-SAP). For the consistency of MAC, MAC_
State must be check to start a new transaction.

[ MCPs-sAP

MAC 802.15.4

) (O]

Fig. 4. Interaction between components of MAC
802.15.4

Details are well documented in the [5]. A new
transaction will generate one or several Ptask.
Those Ptask can also generate other tasks and
queue it in the Task queue. RF and Stimer can also
generate Ptask and queue it.

Internal interactions between components in
MAC design are shown in Fig. 4. In the arrow (1),
tasks in the task queue when activating can use
Stimer for timing functionality. That interaction
can be creation, or deletion a timer. In the arrow
(2), when timer fired, it can call directly to task
within the timer interrupt or create a new task and
put it in to task queue. In the arrow (3), On
Interrupt/Data, RF component generate task and
put it into the Task Queue. In the arrow (4), PTask
send data/control parameters to the RF. In the ar-
row (5), Scheduler schedules the Ptask in task
queue of MAC component. PTask interact with
MAC_State to manage/update the current MAC
state in arrow (6). Request over access point of
MAC will generate a Ptask on Transactions task
queue. This queue has the lowest priority within
all task priorities in arrow (7).

3.3 ZigBee Alliance

ZigBee Stack is implemented following the
ZigBee standard defined by ZigBee Alliance.
According to the defined functionalities, ZigBee
stack is composed of four main components:
NWK component which implements the network
layer, APS component which implements the



Compact Software Design and implementation of IEEE802.15.4 and ZigBee 841

function of Application Support Layer and ZDO
which implements function of ZigBee Device
Object. In the case of ZDO, implementation of this
component follows implementation scheme of a
application and functionality defined in the
standard, Hence we do not present further about
it in this paper.

3.3.1 NWK Component

NWK component is implemented as a separated
ATask. It communicates with upper layer, APS,
and lower layer, MAC, over MDF. Details of this
interaction have been presented in the Fig. 3. In
this paper, we will present some keys point in im-
plementation—-dependent function of NWK layer
which is not defined clearly in the standard. They
are Beacon Scheduling algorithm (BSA). As we
know, in the Beacon-Enable network, every router
has to broadcast beacon to maintain synchroniza-
tion of endpoint under its area. A new router joins
network, it can only use unused segment within
all segment of around routers. Beacon Scheduling
also suffers from a hidden node problem. To avoid
this problems, ZigBee network define a TxOffset
value in the payload of the beacon, which indicates
the timing difference between the beacon and the
neighboring beacons. BSA is present in the
Algorithm 1 to schedule Beacon and avoid the hid~-
den node problem.

Algorithm 1. Beacon Scheduling Algorithm

Input: @' Current interval, b: beacon order, B:
An array of slot in the beacon interval.

- Scan all available beacon
- Mark used slot in B;a=b/2
While (a>1)
{
Check segment number i*a in the array B
(0<i<bla-1)
If free slot found
Return
else
a=a/2

3.3.2 APS Component

APS component implement the function of
Application Support Layer. It's also implemented
on a separate Atask as presented in the Fig. 3. In
this component, we also integrate an important
function ZigBee stack which is Application
Framework. This framework provides entry point
for ZigBee application enpoints. Each enpoints is
registered as one aperiodical task at the compila~
tion of software. Communication of application and
ZigBee stack is over MDF as explained before.
ZigBee application accesses to ZigBee stack over
predefined SAP and access to the others system
resource over NEOS. ‘

3.3. Implementation challenges and solutions

The first challenge is to keep synchronization in
the beacon-enabled network. When a node re-
ceives a beacon, it takes some delay until it can
process that beacon. Two techniques are required
to minimize that delay. Firstly, periodic task which
process the beacon must have highest priority.
Second, compensation to that delay must be added
to the back-off time.

The second challenge is that we must control
the time consumed of every periodic task. The pe-
riodic tasks are performed directly from a timer
interrupt. Periodic tasks must be finished within
one period (which is a back-off time: 320 mi-
cro~second in our system). This can be done by
monitoring the time consumption of every created
periodic task. The implemented protocol should
avoid unnecessary operations. Several technigues
can apply such as using appropriate variable,
avoiding multiple coptes of the same operation and
data redundancy and optimizing the operation of
frequently called functions.

4. EVALUATION METHODOLOGY

Table 2 shows the memory footprint of our stack



842 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 11, NO. 6, JUNE 2008

Table 2. Memory footprint of Protocol Stacks

Coordinator |  Router End point
Our ZigBee 127kb 126kb 107kb
Z-Stack 236kb 255kb 177kb

and Z-Stack (with debugging functionality off) in
Home Lighting Profile application. Our designed
stack has a footprint significantly smaller than the
Z-Stack footprint. In the next parts of this section,
we will present the concern related to evaluation
the correctness the protocol.

Evaluation of the ZigBee is performed over two
kinds of test scenarios. Firstly, message format,
message sequence, and addressing test evaluate
the correctness of the ZigBee Stack in term of
message behaviors which includes the correctness
of message format, correctness of message se-
quences and addressing of the ZigBee. Second,
ZigBee profiling testing is perform to evaluate the
correctness of behaviors of ZigBee network in an
appropriate application, which includes network
formation, network maintenance and profiling of an
appropriate application on ZigBee network.

4.1 Message Format, message sequence and
Addressing test

The hardware for this test includes two nodes:
one endpoint and one coordinator as in the Fig. ba.
We turn off/on repeatedly one of the hardware so
that it would connect and disconnect. This simple
process is done 100 times. While doing this, Air
Sniffer {14] software is running on a computer and
records the information on the network. The num~
ber of requests and responses are counted. Each
requests should be able to get a corresponding
join/disjoin as expected. We count a pair of request
/response as a success otherwise an error. Table
3 shows the result of the test for MAC, NWK and
all protocols. For both MAC and all protocols, there
was a recorded 4% error, while on NWK there
were none. The error is counted when an appro—
priate response is not received after a request.

(D)e—=(2)

Tested Device Zigbee Conformance
Zigbee device
(a)

Switch Remote
Controiler

OOcupancy

Light Sensor
Sensor

Monochromatic

Dimming Load
Controtier

Dimming Remote

Controller Zigbee £ oordinator

Switch Load
Controller

(b)

Fig. 5. Testing scenarios. (a) Test scenario for mes~
sage format and addressing conformance.
(b) Test scenario for Stack Profiling

Table 3. Summary of Error Percentage of Test
Scenarios
Test Type MAC | NWK |DATA| ALL
Message Format 4% 0% N/A | 4%
Message Sequence | 0.1% | 0.1% | 0.04% | 0.24%
Addressing 4% 0% N/A | 4%

4.2 ZigBee Profiling: Home Control Lighting
(HCL) Profile Test

ZigBee Profiling test is done by implement Home
Control Profile of ZigBee network. We implement
six types of device in the HCL Profile including
Switch Remote Controller, Switch Load Controller,
Dimming Remote Controller, Dimming Load
Controller, Occupancy Sensor and Light. Besides a
full function ZigBee network coordinator also is in-
tegrated to be as Coordinator for this test scenario
(Fig. 5b). After ZigBee network of 7 those nodes
are established, we perform the function of Home
Control Lighting Profile and monitor its using Air
Sniffer. Message format, sequence and lighting
event are monitor to assert the correctness of the
profiling. The test results on different HCL test
scenarios are shown in the Table 4. Failed tests are
caused by the failures on the network layer.



Compact Software Design and Implementation of IEEE802.15.4 and ZigBee 843

Table 4. Success rate of the HCL Test Scenarios

Network Binding On/off | Dimming
formation success success success
success rate(%) | rate(%) rate(%) rate(%)
98 98 99.44 99,74

5. CONCLUSION

Regarding the strict requirement in performance
of ZigBee device, we notice the vital position of
system software design. In this paper, we proposed
a compact software design for ZigBee device sup-
porting not only ZigBee standard but also realtime
requirement for MAC IEEE802.15.4. In the further
work, we will perform the exhaustive evaluation
of system performance in comparison with other
design.

REFERENCES

[1] T. Kindberg and A. Fox, “System Software
for Ubiquitous Computing,” IEEE Pervasive
Computing, Vol.1, No.l, pp. 70-81. Mar. 2002.

[2] 1. Akyildiz, W. Su, Y. Sankarasubramaniam,
and E. Cayirci, “A survey on sensor net-
works,” IEEE Communications Magazine,
Vol.40, No.8, pp. 102-114, Aug. 2002.

[311Y. Jung and J.W. Lee, “ZigBee Device
Design and Implementation for Context—-Aware
U-Healthcare System” In Proc of Proceedings
of the Second International Conference on
Systems and Networks Communications, pp.
22, 2007.

[4] Z. Y. Wei, Z. X. Xing, and S. J. Feng, “The
Design of Wireless Sensor Network System
Based on ZigBee Technology for Greenhouse,”
Journal of Physics, Vol48, No.l, pp. 1195~
1199, 2006.

[51 ZigBee Specification Version 1.0, ZigBee
Alliance.

[6] IEEE Standards 802.15.4: Wirereless Medium
Access Control and Physical Layer Specifica-
tions for Low-Rate Wireless Personal Area
Networks.

[7]1 W. Andy, “Embedded ZigBee design consid-
erations,” Wireless Design & Development
Muagazine, Dec. 2005.

[ 81 Chipcon CC2420 IEEE 802.15.4 comphlant chip
Datasheet.

[8]1L. Ko, Y. Liu, and H. Fang, “Design and
Implementation of IEEE 802.15.4 Beacon-en-
abled Network Devices,” In the Proc of
Pervasive Computing and Communications
Workshops 2006, pp. 1-5, Mar. 2006.

[10] Z-Stack ZigBee Software Stack, Texas
Instruments Incorporated.

[11]1 TinyOS. http://www .tinyos.net.

[12]1 D. Gay, P. Levis, and R. Behren, “The nesC
Language: A Holistic Approach to Networked
Embedded Systems,” In the Proc dof
Conference on Programming Language
Design and Implementation, pp. 1-11, 2003.

[13] J. Thomsen and D. Husemann “Evaluating the
use of motes and TinyOS for a mobile sensor
platform” Proc. of the 24th IASTED interna-
tional conference on Parallel and distributed
computing and network, pp. 95-100, 2006.

[14] FTS4ZB IEEE 802.15.4 and ZigBee Wireless
Protocol Analyzer, Packet Sniffer and Bus
Analyzer.

Pham Ngoc Thai

Received his bachelor's degree
in Information and Communi-
cation System from Hanoi
University of Technology, Viet-
nam in 2004. He is now a
Masters student of the Depar-
tment of Electronics and Tele-
communication Engineering, Inje University, Gimhae,
Republic of Korea. His research interests are routing
in wireless network and embedded sensor network.



844

JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 11, NO. 6, JUNE 2008

Ma. Victoria Que

Received her M.S. degree from
Inje University (Gimhae, South
Korea) in 2007. Her research in—
terest includes computer and
sensor networks.

Won-Joo Hwang

Received his Ph.D Degree from
Osaka University Japan in 2002.
He received his bachelor’'s de—
gree and M.S. degree in Compu-
ter Engineering from Pusan
National University, Pusan, Re-
public of Korea, in 1998 and
2000. Since September 2002, he has been an assistant
professor at Inje University, Gyeongnam, Republic of
Korea. Currently, he is the director of the Computer
Networks Laboratory of the same school. His research
interest is in network optimization and ubiquitous sen—
sor networks.



