• 제목/요약/키워드: Open porosity

Search Result 113, Processing Time 0.026 seconds

Dynamic analysis of a cage affected by the current (조류의 영향을 바든 가두리의 거동해석)

  • Lee, Mi-Kyung;Lee, Chun-Woo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.3
    • /
    • pp.214-224
    • /
    • 2004
  • A large cage system for the purpose of fishes farming in the open sea was influenced by various forces from the ocean environment. The deformation of the cage by these forces affects the safety of the cage itself, as well as that of the cultivated creatures. In this research, theoretical model was established to analyzing dynamic movement influenced by current for cage. Also, to increase the accuracy of calculations, the reduction ratio of flow speed acquired using the flume tank experiment. Applying the reduction ratio of flow speed to the numerical calculation, the calculation values were compared with the measured values in the flume tank experiment using cage model. The results were as follows ; 1. When the flow speed of the flume tank is fixed, the decrease of the velocity of flow which is passed the upper panel side is proportion to the increase of porosity ratio of netting. 2. When the porosity ratio is fixed, the increase of the velocity of flow which is passed the upper panel side is proportion to the increase of velocity of flow. 3. When the porosity ratio and the flow speed of the flume tank are fixed, the decrease of the velocity of flow which is passed the upper panel side is proportion to the increase of attack angle. 4. As a result of comparison between the underwater shape by simulation which is applying the reduction ratio of flow speed from the experiment using plane netting and that by model experiment, it was found out that the result of the simulation was very close to that of model gear within ${\pm}$ 5 % error range.

Fabrication of Porous Alumina Ceramics by Spark Plasma Sintering (방전 플라즈마 소결법에 의한 다공성 알루미나 세라믹스의 제조)

  • Shin, Hyun-Cheol;Cho, Won-Seung;Shin, Seung-Yong;Kim, Jun-Gyu
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1183-1189
    • /
    • 2002
  • In order to develope the porous alumina ceramics with high strength, the pore characteristics and compressive strength were investigated in terms of relation to the conditions of spark-plasma sintering and the contents of graphite as a pore precursor. Porous alumina bodies were successfully prepared by spark-plasma sintering and burning out graphite in air. High porous bodies were fabricated by sintering at 1000${\circ}C$ for 3 min under a pressure of 30 MPa, heating rate of 80${\circ}C$/min and on-off pulse type of 12:2. For example, alumina bodies prepared by the addition of 10∼30 vol% graphite showed high porosity of 50∼57%. Also, the open porosity increased with graphite content. The relationship between pore characteristics and graphite contents could be explained by percolation model depending on cluster number and size. Porous alumina bodies prepared by the addition of 10∼30 vol% graphite showed the high compressive strength of 55∼200 MPa. This great improvement in strength was considered to be mainly due to the spark-plasma discharges and the self-heating action between particles.

Vacuum Carburizing System for Powdered Metal Parts & Components

  • Kowakewski, Janusz;Kucharski, Karol
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1018-1021
    • /
    • 2006
  • Powdered metal parts and components may be carburized successfully in a vacuum furnace by combining carburizing technology $VacCarb^{TM}$ with a hi-tech control system. This approach is different from traditional carburizing methods, because vacuum carburizing is a non-equilibrium process. It is not possible to set the carbon potential as in a traditional carburizing atmosphere and control its composition in order to obtain a desired carburized case. This paper presents test results that demonstrate that vacuum carburizing system $VacCarb^{TM}$ carburized P.M. materials faster than traditional steel with acceptable results. In the experiments conducted, PM samples with the lowest density and open porosity showed a dramatic increase in the surface carbon content up to 2.5%C and a 3 times deeper case. Currently the boost-diffusion technique is applied to control the surface carbon content and distribution in the case. In the first boost step, the flow of the carburizing gas has to be sufficient to saturate the austenite, while avoiding soot deposition and formation of massive carbides. To accomplish this goal, the proper gas flow rate has to be calculated. In the case of P.M. parts, more carbon can be absorbed by the part's surface because of the additional internal surface area created by pores present in the carburized case. This amount will depend on the density of the part, the densification grade of the surface layer and the stage of the surface. "as machined" or "as sintered". It is believed that enhanced gas diffusion after initial evacuation of the P.M. parts leads to faster carburization from within the pores, especially when pores are open . surface "as sintered" and interconnected . low density. A serious problem with vacuum carburizing is delivery of the carbon in a uniform manner to the work pieces. This led to the development of the different methods of carburizing gas circulation such as the pulse/pump method or the pulse/pause technique applied in SECO/WARWICK's $VacCarb^{TM}$ Technology. In both cases, each pressure change may deliver fresh carburizing atmosphere into the pores and leads to faster carburization from within the pores. Since today's control of vacuum carburizing is based largely on empirical results, presented experiments may lead to better understanding and improved control of the process.

  • PDF

Soil Management through Green Manure Crop Cultivation Prior to Tea Plantation

  • Kim, K.J.;Yoon, C.Y.;Kim, D.J.;Kim, S.K.;Heo, K.H.;Choi, J.;Lee, J.Y.;Park, J.D.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.25-29
    • /
    • 2011
  • This study was performed to analyze the improvement of soil physical property and soil biota characteristics through cultivation of green manure crops for a one-year period before creation of a tea plantation as follows. The study revealed that the contents of available phosphate tended to decrease after sod-culture by green manure cultivation and open-pollination, when compared to the level before cultivation. The ratio soil porosity increased by approximately 30% when Crotalaria juncea and Sorghum bicolar L. Moench were cultivated, while the soil bacteria and fungi also increased. In a research on microfauna using a pit fall trap, the population number of the microfauna was 174 of 27 species in the plot of open-pollinated sod-culture and no organic matter application, and 268 of 26 species in the plot of Sorghum bicolar L. Moench. Consequently, the culturing tool of Crotalaria juncea recorded the highest level of species diversity at 2.5, the evenness index at 3.7 and richness at 4.6, with the lowest level of a dominance index. The ecological quotient of microfauna was 0.76 in the plot of Sorghum bicolar L. Moench, and 0.63 in the plot of Crotalaria juncea.

Effect of Rye Cultivation for Reduction of Phytophthora Blight in Red Pepper Field (노지고추에서 고추역병 경감을 위한 녹비작물 호밀의 재배효과)

  • Kwon, Oh-Hun;Kim, Chan-Yong;Kim, Young-Suk;Won, Jong-Gun;Jung, Hee-Young
    • Korean Journal of Organic Agriculture
    • /
    • v.28 no.4
    • /
    • pp.579-589
    • /
    • 2020
  • This study was carried out to evaluate the effect of rye as green manure crop on the improvement of soil environment and reduction of Phytophthora blight in red pepper of open field where Phytophthora blight occurred frequently. Soil physical properties such as bulk density and porosity were increased in rye cultivation. In addition, gaseous was increased but liquid was decreased compared with conventional cultivation. The analysis of phospholipid fatty acids extracted from soil showed that rye cultivation significantly increased relative abundance of microbial community and ratio of aerobic to anaerobic bacteria. Furthermore, ratio of saturated to unsaturated fatty acids and cyclo-fatty acids to precursor. the indicators of increasing in environmental stresses, were reduced in rye cultivated field. Occurrence of Phytophthora blight in rye cultivation was reduced 30.7% compared with conventional cultivation. These results suggest that rye cultivation in red pepper of open field where Phytophthora blight occurred can improve soil environment and reduce damage of Phytophthora blight.

Effects of hygro-thermal environment on dynamic responses of variable thickness functionally graded porous microplates

  • Quoc-Hoa Pham;Phu-Cuong Nguyen;Van-Ke Tran
    • Steel and Composite Structures
    • /
    • v.50 no.5
    • /
    • pp.563-581
    • /
    • 2024
  • This paper presents a novel finite element model for the free vibration analysis of variable-thickness functionally graded porous (FGP) microplates resting on Pasternak's medium in the hygro-thermal environment. The governing equations are established according to refined higher-order shear deformation plate theory (RPT) in construction with the modified couple stress theory. For the first time, three-node triangular elements with twelve degrees of freedom for each node are developed based on Hermitian interpolation functions to describe the in-plane displacements and transverse displacements of microplates. Two laws of variable thickness of FGP microplates, including the linear law and the nonlinear law in the x-direction are investigated. Effects of thermal and moisture changes on microplates are assumed to vary continuously from the bottom surface to the top surface and only cause tension loads in the plane, which does not change the material's mechanical properties. The numerical results of this work are compared with those of published data to verify the accuracy and reliability of the proposed method. In addition, the parameter study is conducted to explore the effects of geometrical and material properties such as the changing law of the thickness, length-scale parameter, and the parameters of the porosity, temperature, and humidity on the free vibration response of variable thickness FGP microplates. These results can be applied to design of microelectromechanical structures in practice.

Elucidating Electrochemical Energy Storage Performance of Unary, Binary, and Ternary Transition Metal Phosphates and their Composites with Carbonaceous Materials for Supercapacitor Applications

  • Muhammad Ramzan Abdul Karim;Waseem Shehzad;Khurram Imran Khan;Ehsan Ul Haq;Yousaf Haroon
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.321-344
    • /
    • 2024
  • Transition metal compounds (TMCs) are being researched as promising electrode materials for electrochemical energy storage devices (supercapacitors). Among TMCs, transition metal phosphates (TMPs) have good, layered structures owing to open framework and protonic exchange capability among different layers, good surface area due to engrossed porosity, rich active redox reaction sites owing to octahedral structure and variable valance metallic ions. Hence TMPs become more ideal for supercapacitor electrode materials compared to other TMCs. However, TMPs have got some issues like low conductivity, rate performance, stability, energy, and power densities. But these problems can be addressed by making their composites with carbonaceous materials, e.g., carbon nanotubes (CNTs), graphene oxide (GO), graphitic carbon (GC), etc. A few factors like high surface area, excellent electrical conductivity of carbon materials and variable valence metal ions in TMPs caused great enhancement in their electrochemical performance. This article tries to discuss and compare the published data, majorly in last decade, regarding the electrochemical energy storage potential of pristine unary, binary, and ternary TMPs and their hybrid composites with carbonaceous materials (CNTs, GOs/rGOs, GC, etc.). The electrochemical performance of the hybrids has been reported to be higher than the pristine counterparts. It is hoped that the current review will open a new gateway to study and explore the high performance TMPs based supercapacitor materials.

Studies on the Physico-Chemical Characteristics of Different Casing Materials Affecting Mycelial Growth and Yield of Cultivated Mushroom, Agaricus bisporus (Lange) Sing. (양송이의 균사생장(菌絲生長) 및 자실체(子寶體) 수량(收量)에 미치는 복토재료(覆土材料)의 이화학적(理化學的) 성질(性質)에 관(關)한 연구(硏究))

  • Kim, Dong-Soo
    • The Korean Journal of Mycology
    • /
    • v.3 no.1
    • /
    • pp.1-19
    • /
    • 1975
  • Since the importance of casing in fruit body formation of Agaricus bisporus has been emphasized, physico-chemical characteristics of casing materials were discussed by many workers and a mixture of peat and mineral soil as proper casing material has been adopted in many of mushroom growing countries. Because of limited resources of peat in Korea, it is necessary to find practical performance and substitutional materials for casing. The effect of casing on mycelial growth and mushroom yield of A. bisporus varied with materials, its combination and practices etc. The experiments to be discussed in this paper are concerned with pH and Ca of casing material which influence A bisporus, and changes of physico-chemical characteristics with mixing ratio of casing materials and its effect on A. bisporus. The optimum range of moisture content of each material, management of watering and application of physico-chemical characteristics casing materials was also investigated and re-use of weathered spent compost for casing material was described. 1. The effect of calcium on mycelial growth of A. bisporus at various pH in Halbschalentest showed different results with calcium sources. Best results were obtained around neutrality and fresh weight of fruit bodies grown in the range of pH 7 to 8 was highest among the tested levels. 2. Available moisture, pore space, organic matter, cation exchangeable capacity and exchangeable cation was increased by an increase of mixing ratio of peat in casing materials, while an adverse effect was obtained by addition of sand. 3. Mycelial growth on clay loam was more rapid at a lower bulk density of 0.75g/cc and at 20% moisture content on a dry weight basis at the same bulk density. 4. Mixing ratio of casing materials, 60 to 80 per cent by volume of peat mixed with 20 to 40 per cent of clay loam produced the highest yield of fresh fruit bodies and sand the lowest. However, per cent of open cap was highest in peat and lowest in sand. 5. Days required for fruit body initiation was shortened in mixtures of peat and clay loam by one to three days compared with other materials and the formation of flushes was clear. 6. The effect of some physico-chemical characteristics of casing materials on the fresh weight of fruit bodies were estimated by a multiple regression equation; Y=-923.86+$8.18X_1+8.04X_2+7.90X_3+0.12X_4+2.03X_5-0.82X_6-0.54X_7$ where $X_1,X_2,X_3,X_4,X_5,X_6,X_7$ are sand, silt, clay, available moistuer, porosity, organic matter and exchangeable cation respectively. The productivity of certain casing material could be predicted from this equation. 7. Fresh weight of fruit bodies was positively correlated with porosity exchangeable cation, organic matter, available moisture, silt and clay of materials; while sand was negatively correlated. On the contrary, sand was the unique factor reducing per cent of open cap. 8. Distribution of three phases of high productive casing material was concentrated in the range of 10 to 30 per cent solids, 15 to 30 per cent liquids, and 50 to 60 per cent in air volume. 9. Fresh weight of fruit bodies from peat was not affected with heavy watering but in clay loam and sandy loam severe crop losses occurred. Fresh weight of individual fruit was increased and open caps were decreased with heavy watering but light watering resulted in adverse effects: its effect was especially great in peat. 10. Optimum range of moisture content by weight on a dry basis was different with each casing material. To maintain optimum moisture content concerned with yield of fruit bodies and open cap, sandy loam and peat mixtures required daily watering of 0.6, 0.6 to 1. 2 and 1.2 to 2.4 liters per $3.3m^2$ of bed area, respectively. 11. Maximum yield of fruit body was recorded in the range of pF 2. 0 to 2. 5 of casing materials if organic matter content was below 4.2 per cent and in pF 1. 3 to 1.8 if above 7.1%. 12. pF curve of a certain casing material could be draws from moisture content at various pF values by multiple regression equations provided texture, organic matter and calcium of the casing material are given. Optimum moisture range of the casing materials also could be estimated by the equation. 13. It was possible to improve the phyico-chemical characteristics of clay loam and sandy loam by addition of weathered spent compost although the effect was less than in the case of peat. Fresh weight of fruit bodies wsa increased by addition of weathered spent compost but its effect was not as remarkable as peat. Accordingly, further studies will be required.

  • PDF

Durability of self compacted concrete containing slag in hot climate

  • Yahiaoui, Walid;Kenai, Said;Menadi, Belkacem;Kadri, El-Hadj
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.271-288
    • /
    • 2017
  • This paper aims to investigate the effects of replacing cement with ground granulated blast furnace slag (GGBFS) in self compacting concrete in the fresh and hardened state. The performance of SCC in moderate climate is well investigated but few studies are available on the effect of hot environment. In this paper, the effect of initial water-curing period and curing conditions on the performance of SCC is reported. Cement was substituted by GGBFS by weight at two different levels of substitution (15% and 25%). Concrete specimens were stored either in a standard environment (T=$20^{\circ}C$, RH=100%) or in the open air in North Africa during the summer period (T=35 to $40^{\circ}C$; R.H=50 to 60%) after an initial humid curing period of 0, 3, 7 or 28 days. Compressive strength at 28 and 90 days, capillary absorption, sorptivity, water permeability, porosity and chloride ion penetration were investigated. The results show that the viscosity and yield stress are decreased with increasing dosage of GGBFS. The importance of humid curing in hot climates in particular when GGBFS is used is also proved. The substitution of cement by GGBFS improves SCC durability at long term. The best performances were observed in concrete specimens with 25% GGBFS and for 28 days water curing.

Wave Simulation for the Optimum Design of Jangjeon Harbour (장전항 최적 설계를 위한 정온도 해석)

  • Hong Keyyong;Yang Chankyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.2
    • /
    • pp.49-59
    • /
    • 2000
  • Wave distribution in Jangjeon Harbour is numerically simulated for an optimum design of the harbour facilities. A deep-water design wave is estimated based on stochastic extreme wave analysis of wind data in the vicinity of the harbour, and it is applied to the boundary condition at open sea. Boussinesq wave theory that includes effects of frequency dispersion and nonlinearity is employed for the wave simulation. The porosity and sponge layer are adapted at beach to depict partial reflection and complete absorption of waves, respectively. The design wave for breakwater is computed in global domain with coarse grids and the wave distribution inside of wharf is simulated in local domain with fine grids.

  • PDF