DOI QR코드

DOI QR Code

Elucidating Electrochemical Energy Storage Performance of Unary, Binary, and Ternary Transition Metal Phosphates and their Composites with Carbonaceous Materials for Supercapacitor Applications

  • Muhammad Ramzan Abdul Karim (Faculty of Materials and Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology (GIKI)) ;
  • Waseem Shehzad (Faculty of Materials and Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology (GIKI)) ;
  • Khurram Imran Khan (Faculty of Materials and Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology (GIKI)) ;
  • Ehsan Ul Haq (Department of Metallurgical and Materials Engineering, Faculty of Chemical, Metallurgical and Polymer Engineering, University of Engineering and Technology (UET)) ;
  • Yousaf Haroon (Faculty of Materials and Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology (GIKI))
  • Received : 2024.01.01
  • Accepted : 2024.03.28
  • Published : 2024.08.31

Abstract

Transition metal compounds (TMCs) are being researched as promising electrode materials for electrochemical energy storage devices (supercapacitors). Among TMCs, transition metal phosphates (TMPs) have good, layered structures owing to open framework and protonic exchange capability among different layers, good surface area due to engrossed porosity, rich active redox reaction sites owing to octahedral structure and variable valance metallic ions. Hence TMPs become more ideal for supercapacitor electrode materials compared to other TMCs. However, TMPs have got some issues like low conductivity, rate performance, stability, energy, and power densities. But these problems can be addressed by making their composites with carbonaceous materials, e.g., carbon nanotubes (CNTs), graphene oxide (GO), graphitic carbon (GC), etc. A few factors like high surface area, excellent electrical conductivity of carbon materials and variable valence metal ions in TMPs caused great enhancement in their electrochemical performance. This article tries to discuss and compare the published data, majorly in last decade, regarding the electrochemical energy storage potential of pristine unary, binary, and ternary TMPs and their hybrid composites with carbonaceous materials (CNTs, GOs/rGOs, GC, etc.). The electrochemical performance of the hybrids has been reported to be higher than the pristine counterparts. It is hoped that the current review will open a new gateway to study and explore the high performance TMPs based supercapacitor materials.

Keywords

References

  1. J.-M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, In: V. Dusastre (ed.), Materials for Sustainable Energy, A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific Publishing Co., UK, 2010, 171-179.
  2. W. Li, B. Song, and A. Manthiram, Chem. Soc. Rev., 2017, 46, 3006-3059 
  3. P. Simon and Y. Gogotsi, Nature Mater., 2008, 7, 845-854. 
  4. G. Wang, L. Zhang, and J. Zhang, Chem. Soc. Rev., 2012, 41, 797-828. 
  5. R. R. Salunkhe, J. Tang, N. Kobayashi, J. Kim, Y. Ide, S. Tominaka, J. H. Kim, and Y. Yamauchi, Chem. Sci., 2016, 7, 5704-5713. 
  6. M. Sun, H. Liu, J. Qu, and J. Li, Adv. Energy Mater., 2016, 6(13), 1600087. 
  7. V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero-Gonzalez, and T. Rojo, Energy Environ. Sci., 2012, 5, 5884-5901. 
  8. G. Wu and P. Zelenay, Acc. Chem. Res., 2013, 46(8), 1878-1889. 
  9. L. Chen, X. Xu, W. Yang, and J. Jia, Chin. Chem. Lett., 2020, 31(3), 626-634. 
  10. Y. Nie, L. Li, and Z. Wei, Chem. Soc. Rev., 2015, 44, 2168-2201. 
  11. P. Barpanda, G. Oyama, S. Nishimura, S.-C. Chung, and A. Yamada, Nat. Commun., 2014, 5, 4358. 
  12. J. M. Tarascon, Nature Chem., 2010, 2, 510. 
  13. E. Baasanjav, P. Bandyopadhyay, G. Saeed, S. Lim, and S. M. Jeong, J. Ind. Eng. Chem., 2021, 99, 299-308. 
  14. W. Khalid, M. R. A. Karim, and M. A. Marwat, J. Electrochem. Sci. Technol., 2023, 15(1), 14-31. 
  15. A. Thomas, Angew. Chem. Int. Ed., 2010, 49(45), 8328-8344. 
  16. M. R. A. Karim, M. Noman, K. I. Khan, W. Shehzad, E. U. Haq, N. Shahzad, and K. Yaqoob, ECS J. Solid State Sci. Tehcnol., 2022, 11, 011001. 
  17. M. E. Davis, Nature, 2002, 417, 813-821. 
  18. W. Li, J. Liu, and D. Zhao, Nat. Rev. Mater., 2016, 1, 16023. 
  19. M. R. A. Karim and W. Shehzad, J. Energy Storage, 2023, 72, 108288. 
  20. J. Ma, Y. Ren, X. Zhou, L. Liu, Y. Zhu, X. Cheng, P. Xu, X. Li, Y. Deng, and D. Zhao, Adv. Funct. Mater., 2018, 28(6), 1705268. 
  21. A. Ghaffar, L. Zhang, X. Zhu, and B. Chen, Environ. Sci. Tehcnol., 2018, 52(7), 4265-4274. 
  22. Q. Yue, M. Wang, J. Wei, Y. Deng, T. Liu, R. Che, B. Tu, and D. Zhao, Angew. Chem. Int. Ed., 2012, 51(41), 10368-10372. 
  23. Y. Chen, Q. Meng, M. Wu, S. Wang, P. Xu, H. Chen, Y. Li, L. Zhang, L. Wang, and J. Shi, J. Am. Chem. Soc., 2014, 136(46), 16326-16334. 
  24. T. Yokoi, Y. Kubota, and T. Tatsumi, Appl. Catal. A Gen., 2012, 421-422, 14-37. 
  25. P. Mei, J. Kim, N. A. Kumar, M. Pramanik, N. Kobayashi, Y. Sugahara, and Y. Yamauchi, Joule, 2018, 2(11), 2289-2306. 
  26. N. Linares, A. M. Silvestre-Albero, E. Serrano, J. Silvestre-Albero, and J. Garcia-Martinez, Chem. Soc. Rev., 2014, 43, 7681-7717. 
  27. X. Sun, L. Lu, Q. Zhu, C. Wu, D. Yang, C. Chen, and B. Han, Angew. Chem. Int. Ed., 2018, 57(9), 2427-2431. 
  28. B. Hatton, K. Landskron, W. Whitnall, D. Perovic, and G. A. Ozin, Acc. Chem. Res., 2005, 38(4), 305-312. 
  29. S. H. Wu, C.-Y. Mou, and H.-P. Lin, Chem. Soc. Rev., 2013, 42, 3862-3875. 
  30. N. Mizoshita and S. Inagaki, Angew. Chem. Int. Ed., 2015, 54(41), 11999-12003. 
  31. Y. Wan and D. Zhao, Chem. Rev., 2007, 107(7), 2821-2860. 
  32. F. Schuth, Chem. Mater., 2001, 13(10), 3184-3195. 
  33. D. Gu and F. Schuth, Chem. Soc. Rev., 2014, 43, 313-344. 
  34. T.-Y. Ma and Z.-Y. Yuan, ChemSusChem., 2011, 4(10), 1407-1419.
  35. P. Bhanja, S. Chatterjee, A. K. Patra, and A. Bhaumik, J. Colloid Interface Sci., 2018, 511, 92-100. 
  36. M. Conte, G. Budroni, J. K. Bartley, S. H. Taylor, A. F. Carley, A. Schmidt, D. M. Murphy, F. Girgsdies, T. Ressler, R. Schlogl, and G. J. Hutchings, Science, 2006, 313, 1270-1273. 
  37. T.-Z. Ren, Z.-Y. Yuan, A. Azioune, J.-J. Pireaux, and B.-L. Su, Langmuir, 2006, 22(8), 3886-3894. 
  38. R. Murugavel, A. Choudhury, M. G. Walawalkar, R. Pothiraja, and C. N. R. Rao, Chem. Rev., 2008, 108(9), 3549-3655. 
  39. G. Alberti, M. Casciola, U. Costantino, and R. Vivani, Adv. Mater., 1996, 8(4), 291-303. 
  40. R. Lin and Y. Ding, Materials, 2013, 6(1), 217-243. 
  41. Y.-P. Zhu, T.-Y. Ma, Y.-L. Liu, T.-Z. Ren, and Z.-Y. Yuan, Inorg. Chem. Front., 2014, 1, 360-383. 
  42. M. Serhan, M. Sprowls, D. Jackemeyer, M. Ling, M. Sprowls, I. D. Perez, W. Maret, F. Chen, N. Tao, and E. Forzani, IEEE J. Transl. Eng. Health Med., 2020, 8, 2800309. 
  43. Z. Abbas, M. R. A. Karim, W. Shehzad, N. A. Shama, J. Kumar, Sirajuddin, S. Karakus, R. A. Soomro, and A. Nafady, Electrochim. Acta, 2023, 471, 143350. 
  44. K. J. Gagnon, H. P. Perry, and A. Clearfield, Chem. Rev., 2012, 112(2), 1034-1054. 
  45. A. Vioux, J. Bideau, P. H. Mutin, and D. Leclercq, Hybrid organic-inorganic materials based on organophosphorus derivatives. In: J.-P. Majoral (eds.), New Aspects in Phosphorus Chemistry IV. Topics in Current Chemistry, Springer, Berlin, Heidelberg, 2012, 232, 145-174.
  46. M. R. A. Karim, W. Khalid, and R. Zahid, Energy Technol., 2024, 12(4), 2301160. 
  47. G. Cao, H. G. Hong, and T. E. Mallouk, Acc. Chem. Res., 1992, 25(9), 420-427. 
  48. P. H. Mutin, G. Guerrero, and A. Vioux, J. Mater. Chem., 2005, 15, 3761-3768. 
  49. M. V. Vasylyev, E. J.Wachtel, R. Popovitz-Biro, and R. Neumann, Chem. A Eur. J., 2006, 12(13), 3507-3514. 
  50. A. Clearfield and Z. Wang, J. Chem. Soc. Dalt. Trans., 2002, 2937-2947. 
  51. F. S. Freitas, A. S. Goncalves, A. De Morais, J. E. Benedetti, and A. F. Nogueira, J. NanoGe J. Energy Sustain., 2012, 1, 11002-11003. 
  52. S. T. Oyama, T. Gott, H. Zhao, and Y.-K. Lee, Catal. Today, 2009, 143(1-2), 94-107. 
  53. S. T. Oyama, Transition metal carbides, nitrides, and phosphides, In: G. Ertl, H. Knozinger, F. Schuth, and J. Weitkamp (eds.), Handbook of Heterogeneous Catalysis, 2008.
  54. J. F. Callejas, C. G. Read, C. W. Roske, N. S. Lewis, and R. E. Schaak, Chem. Mater., 2016, 28(17), 6017-6044. 
  55. X. Li, A. M. Elshahawy, C. Guan, and J. Wang, Small, 2017, 13(39), 1701530. 
  56. M.-Q. Wang, C. Ye, H. Liu, M. Xu, and S.-J. Bao, Angew. Chem. Int. Ed., 2018, 57(7), 1963-1967. 
  57. H. Lu, W. Fan, Y. Huang, and T. Liu, Nano Res., 2018, 11, 1274-1284. 
  58. B. L. Ellis, W. R. M. Makahnouk, Y. Makimura, K. Toghill, and L. F. Nazar, Nature Mater., 2007, 6, 749-753. 
  59. P. P. Prosini, M. Lisi, S. Scaccia, M. Carewska, F. Cardellini, and M. Pasquali, J. Electrochem. Soc., 2002, 149, A297. 
  60. D. Wang and D. Astruc, Chem. Soc. Rev., 2017, 46, 816-854. 
  61. Y. Shi and B. Zhang, Chem. Soc. Rev., 2016, 45, 1529-1541. 
  62. P. Xiao, W. Chen, and X. Wang, Adv. Energy Mater., 2015, 5(24), 1500985. 
  63. K. Raju and K. I. Ozoemena, Sci. Rep., 2015, 5, 17629. 
  64. S. Winter, N. Tortik, A. Kubin, B. Krammer, and K. Plaetzer, Photochem. Photobiol. Sci., 2013, 12, 1795-1802. 
  65. C. Zeng, W. Wei, and L. Zhang, CrystEngComm, 2012, 14, 3008-3011. 
  66. G. V. Kiriukhina, O. V. Yakubovich, and O. V. Dimitrova, Crystallogr. Rep., 2015, 60, 198-203. 
  67. Z. Wang, J. Gu, X. Liu, X. Sun, J. Li, S. Li, S. Tang, B. Wen, and F. Gao, Nanotechnology, 2018, 29, 425401. 
  68. K. Raju, H. Han, D. B. Velusamy, Q. Jiang, H. Yang, F. P. Nkosi, N. Palaniyandy, K. Makgopa, Z. Bo, and K. I. Ozoemena, ACS Energy Lett., 2020, 5(1), 23-30. 
  69. C. Wu, X. Lu, L. Peng, J. Huang, G. Yu, and Y. Xie, Nat. Commun., 2013, 4, 2431. 
  70. X. Li, X. Xiao, Q. Li, J. Wei, H. Wue, and H. Pang, Inorg. Chem. Front., 2018, 5, 11-28 
  71. T. Kozawa, K. Fukuyama, A. Kondo, and M. Naito, ACS Omega, 2019, 4(3), 5690-5695. 
  72. I. Chakraborty, K. J. Bodurtha, N. J. Heeder, M. P. Godfrin, A. Tripathi, R. H. Hurt, A. Shukla, and A. Bose, ACS Appl. Mater. Interfaces, 2014, 6(19), 16472-16475. 
  73. K. T. Lee, T. N. Ramesh, F. Nan, G. Botton, and F. Nazar, Chem. Mater., 2011, 23(16), 3593-3600. 
  74. X. Rui, X. Zhao, Z. Lu, H. Tan, D. Sim, H. H. Hng, R. Yazami, T. M. Lim, and Q. Yan, ACS Nano, 2013, 7(6), 5637-5646. 
  75. B. Zhao, L. Zhang, Q. Zhang, D. Chen, Y. Cheng, X. Chen, R. Murphy, X. Xiong, B. Song, C.-P. Wong, M.-S. Wang, and M. Liu, Adv. Energy Mater., 2018, 8(9), 1702247. 
  76. A. A. Mirghni, M. J. Madito, K. O. Oyedotun, T. M. Masikhwa, N. M. Ndiaye, S. J. Ray, and N. Manyala, RSC Adv., 2018, 8, 11608-11621. 
  77. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, Chem. Soc. Rev., 2015, 44, 7484-7539. 
  78. Y. Wang, L. Yu, and Y. Xia, J. Electrochem. Soc., 2006, 153, A743. 
  79. B. Tao, J. Zhang, F. Miao, S. Hui, and L. Wan, Electrochim. Acta, 2010, 55(18), 5258-5262. 
  80. Y.-T. Kim, K. Tadai, and T. Mitani, J. Mater. Chem., 2005, 15, 4914-4921. 
  81. I. Butnaru, A.-P. Chiriac, C.-P. Constantin, and M.-D. Damaceanu, Mater. Today Chem., 2022, 23, 100671. 
  82. Y.-G. Wang, H.-Q. Li, and Y.-Y. Xia, Adv. Mater., 2006, 18(19), 2619-2623. 
  83. S. M. Aqeel, Z. Huang, J. Walton, C. Baker, D. Falkner, Z. Liu, and Z. Wang, Adv. Compos. Hybrid Mater., 2018, 1, 185-192. 
  84. K. L. Zhou, H. Wang, J. T. Jiu, J. B. Liu, H. Yan, and K. Suganuma, Chem. Eng. J., 2018, 345, 290-299. 
  85. H. Kim, A. P. Tiwari, T. Mukhiya, and H. Y. Kim, J. Colloid Interface Sci., 2021, 600, 740-751. 
  86. J. Wang, Z. He, X. Tan, T. Wang, L. Liu, X. He, X. D. Liu, L. Zhang, and K. Du, Carbon, 2020, 160, 71-79. 
  87. K. A. Owusu, Z. Wang, L. Qu, Z. Liu, J. A. Mehrez, Q. Wei, L. Zhou, and L. Mai, Chin. Chem. Lett., 2020, 31(6), 1620-1624. 
  88. J. Bhagwan, S. K. Hussain, B. N. V. Krishna, and J. S. Yu, Sustain. Energy Fuels, 2020, 4, 5550-5559. 
  89. A. C. Lokhande, S. Teotia, A. R. Shelke, T. Hussain, I. A. Qattan, V. C. Lokhande, S. Patole, J. H. Kim, and C. D. Lokhande, Chem. Eng. J., 2020, 399, 125711. 
  90. X. Wei, H. Peng, Y. Li, Y. Yang, S. Xiao, L. Peg, Y. Zhang, and P. Xiao, ChemSusChem, 2018, 11(18), 3167-3174. 
  91. K. O. Oyedotun, T. M. Masikhwa, A. A. Mirghni, B. K. Mutuma, and N. Manyala, Electrochim. Acta, 2020, 334, 135610. 
  92. H. Hosseini and S. Shahrokhian, Chem. Eng. J., 2018, 341, 10-26. 
  93. S. Dutta and S. De, AIP Conf. Proc., 2016, 1728, 020479.
  94. H. P. Kim, A. R. M. Yusoff, M. S. Ryu, and J. Jang, Org. Electron., 2012, 13(12), 3195-3202. 
  95. W. Shehzad, M. R. A. Karim, M. Z. Iqbal, N. Shahzad, and A. Ali, J. Energy Storage, 2022, 54, 105231. 
  96. V. Sharmila and M. Parthibavarman, J. Mater. Sci. Mater. Electron., 2019, 30, 19813-19825. 
  97. B. G. S. Raj, J. J. Wu, A. M. Asiri, and S. Anandan, RCS Adv., 2013, 6, 33361-33368. 
  98. H. S. Jadhav, S. M. Pawar, A. H. Jadhav, G. M. Thorat, and J. G. Seo, Sci. Rep., 2016, 6, 31120. 
  99. Y. Tian, H. Du, S. Sarwar, W. Dong, Y. Zheng, S. Wang, Q. Guo, J. Luo, and X. Zhang, Front. Chem. Sci. Eng., 2021, 15(4), 1021-1032. 
  100. X. Yang, Y. Tian, S. Sarwar, M. Zhang, H. Zhang, J. Luo, and X. Zhang, Electrochim. Acta, 2019, 311, 230-243. 
  101. Y. Bi, A. Nautiyal, H. Zhang, J. Luo, and X. Zhang, Electrochim. Acta, 2018, 260, 952-958. 
  102. C. An, Y. Wang, L. Li, F. Qiu, Y. Xu, C. Xu, Y. Huang, and L. J. H. Yuan, Electrochim. Acta, 2014, 133, 180-187.
  103. Y. Ding, H. Alias, D. Wen, and R. A. Williams, Int. J. Heat Mass Transf., 2006, 49(1-2), 240-250. 
  104. C. Wu, P. Kopold, P. A. van Aken, J. Maier, and Y. Yu, Adv. Mater., 2017, 29(3), 1604015. 
  105. Y. Lu, J.-P. Tu, Q.-Q. Xiong, J.-Y. Xiang, Y.-J. Mai, J. Zhang, Y.-Q. Qiao, X.-L. Wang, C.-D. Gu, and S. X. Mao, Adv. Funct. Mater., 2012, 22(18), 3927-3935. 
  106. Z. Guang, Y. Huang, X. Chen, X. Sun, M. Wang, X. Feng, C. Chen, and X. Liu, Electrochim. Acta, 2019, 307, 260-268. 
  107. Y. Lu, J. Liu, X. Liu, S. Huang, T. Wang, X. Wang, C. Gu, J. Tu, and S. X. Mao, CrystEngComm, 2013, 15, 7071-7079. 
  108. M. Z. Iqbal, M. M. Faisal, S. R. Ali, and A. M. Afzal, J. Electroanal. Chem., 2020, 871, 114299. 
  109. A. A. Mirghni, M. J. Madito, T. M. Masikhwa, K. O. Oyedotun, A. Bello, and N. Manyala, J. Colloid Interface Sci., 2017, 494, 325-337. 
  110. K. V. Sankar, S. C. Lee, Y. Seo, C. Ray, S. Liu, A. Kundu, and S. C. Jun, J. Power Sources, 2018, 373, 211-219. 
  111. B. A. Mahmoud, A. A. Mirghni, K. O. Oyedotun, D. Momodu, O. Fasakin, and N. Manyala, J. Alloys Compd., 2020, 818, 153332. 
  112. J.-J. Li, M.-C. Liu, L.-B. Kong, M. Shi, W. Han, and L. Kang, Mater. Lett., 2015, 161, 404-407. 
  113. A. A. Mirghni, D. Momodu, K. O. Oyedotun, J. K. Dangbegnon, and N. Manyala, Electrochim. Acta, 2018, 283, 374-384. 
  114. X.-J. Ma, W.-B. Zhang, L.-B. Kong, Y.-C. Luo, and L. Kang, RSC Adv., 2016, 6, 40077-40085. 
  115. M.-C. Liu, J.-J. Li, Y.-X. Hu, Q.-Q. Yang, and L. Kang, Electrochim. Acta, 2016, 201, 142-150. 
  116. H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang, and S. Wang, J. Power Sources, 2009, 190(2), 578-586. 
  117. T. Dang, L. Wang, D. Wei, G. Zhang, Q. Li, X. Zhang, Z. Cao, G. Zhang, and H. Duan, Electrochim. Acta, 2019, 299, 346-356. 
  118. X. Sun and Y. Li, Angew. Chem. Int. Ed., 2004, 43(5), 597-601. 
  119. X. Xiao, B. Han, G. Chen, L. Wang, and Y. Wang, Sci. Rep., 2017, 7, 40167. 
  120. B. Reti, G. I. Kiss, T. Gyulavari, K. Baan, K. Magyari, and K. Hernadi, Catal. Today, 2017, 284, 160-168. 
  121. M. R. A. Karim, W. Shehzad, M. Atif, E. ul Haq, and Z. Abbas, Energy Environ., 2024, Epub ahead of print. DOI:10.1177/0958305X231221260 
  122. W. Shehzad and M. R. A. Karim, J. Energy Storage, 2024, 81, 110435. 
  123. M. Guo, S. Wang, L. Zhao, and Z. Guo, Electrochim. Acta, 2018, 292, 299-308. 
  124. J.-S. Wei, H. Ding, P. Zhang, Y.-F. Song, J. Chen, Y.-G. Wang, and H.-M. Xiong, Small, 2016, 12, 5927-5934. 
  125. E. Kao, H.-S. Jang, X. Zang, and L. Lin, Synthesis and integration of 2D iron phosphate sheets for energy storage devices, 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 2017, 1336-1339.
  126. Y. Q. Jiang, Q. Zhou, and L. Lin, Planar mems supercapacitor using carbon nanotube forests, 2009 IEEE International Conference on Micro Electro Mechanical Systems, Sorrento, Italy, 2009, 587-590.
  127. W. Shehzad and M. R. A. Karim, Appl. Phys. A, 2023, 129, 492. 
  128. V. Sharmila, R. Packiaraj, N. Nallamuthu, and M. Parthibavarman, Inorg. Chem. Commun., 2020, 121, 108194. 
  129. J. A. Rajesh, J.-H. Park, V. H. Vinh Quy, J. M. Kwon, J. Chae, S.-H. Kang, H. Kim, and K.-S. Ahn, J. Ind. Eng. Chem., 2018, 63, 73-83. 
  130. L. Wang, R. Zhang, Y. Jiang, H. Tian, Y. Tan, K. Zhu, Z. Yu, and W. Li, Nanoscale, 2019, 11, 13894-13902. 
  131. S. Wang, M. Mao, Y. Cao, H. Luo, H. Wang, and D. Guo, Inorg. Chem. Commun., 2020, 114, 107822. 
  132. J. Theerthagiri, K. Thiagarajan, B. Senthilkumar, Z. Khan, R. A. senthil, P. Arunachalam, J. Madhavan, and M. Ashokkumar, ChemistrySelect, 2017, 2(1), 201-210. 
  133. B. Li, Y. Shi, K. Huang, M. Zhao, J. Ziu, H. Xue, and H. Pang, Small, 2018, 14(13), 1703811. 
  134. X. Yang, Z. Zhu, T. Dai, and Y. Lu, Macromol. Rapid Commun., 2005, 26(21), 1736-1740. 
  135. W. Khalid, M. R. A. Karim, M. Atif, W. Shehzad, M. A. Marwat, and K. Yaqqob, Energy Environ., 2023, Epub ahead of print. DOI: 10.1177/0958305X23119 
  136. T. Dang, D. Wei, G. Zhang, L. Wang, Q. Li, H. Liu, Z. Cao, G. Zhang, and H. Duan, Electrochim. Acta, 2020, 341, 135988. 
  137. X. Zhang, J. Wang, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. He, and D. Zhuang, ACS Appl. Nano Mater., 2020, 3(12), 11945-11954. 
  138. R. Zahid, M. R. A. Karim, W. Khalid, and M. A. Marwat, Energy Technol., 2024, 12(4), 2300883. 
  139. W. Khalid, M. R. A. Karim, A. S. A. Shahid, W. Shehzad, and M. A. Marwat, J. Energy Storage, 2024, 77, 109962. 
  140. A. A. Mirghni, K. O. Oyedotun, B. A. Mahmoud, A. Bello, S. C. Ray, and N. Manyala, Compos. Part B Eng., 2019, 174, 106953. 
  141. A. A. Mirghni, K. O. Oyedotun, O. Fasakin, B. A. Mahmoud, D. J. Tarimo, and N. Manyala, J. Energy Storage, 2020, 31, 101584. 
  142. M. Li, J. P. Cheng, J. Wang, F. Liu, and X. B. Zhang, Electrochim. Acta, 2016, 206, 108-115. 
  143. N. Rey-Raap, M. A. C. Granja, M. F. R. Pereira, and J. L. Figueiredo, Electrochim. Acta, 2020, 354, 136713. 
  144. N. Rey-Raap, M. Enterria, J. I. Martins, M. F. R. Pereira, and J. L. Figueiredo, ACS Appl. Mater. Interfaces, 2019, 11(6), 6066-6077. 
  145. B. Li, P. Gu, Y. Feng, G. Zhang, K. Huang, H. Xue, and H. Pang, Adv. Funct. Mater., 2017, 27(12), 1605784. 
  146. W. Shehzad and M. R. A. Karim, Diam. Relat. Mater., 2023, 137, 110050. 
  147. N. L. Wulan Septiani, Y. V. Kaneti, K. B. Fathoni, J. Wang, Y. Ide, B. Yuliarto, Nugraha, H. K. Dipojono, A. K. Nanjundan, D. Golberg, Y. Bando, and Y. Yamauchi, Nano Energy, 2020, 67, 104270. 
  148. J. Yuan, X. Zheng, D. Yao, L. Jiang, Y. Li, J. Che, G. He, and H. Chen, Dalt. Trans., 2018, 47, 13052-13062. 
  149. P. K. Katkar, S. J. Marje, S. S. Pujari, S. A. Khalate, P. R. Deshmukh, and U. M. Patil, Synth. Met., 2020, 267, 116446. 
  150. X.-J. Ma, W.-B. Zhang, L.-B. Kong, W.-C. Luo, and L. Kang, RSC Adv., 2016, 6, 40077-40085. 
  151. Z. Luo, E. Liu, T. Hu, Z. Li, and T. Liu, Ionics, 2014, 21, 289-294. 
  152. S. J. Marje, P. K. Katkar, S. S. Pujari, S. A. Khalate, A. C. Lokhande, and U. M. Patil, Synth. Met., 2020, 259, 116224. 
  153. N. Li, Z. Xu, Y. Liu, and Z. Hu, J. Power Sources, 2019, 426, 1-10. 
  154. H. E. Mouahid, Y. Bou-ouzoukni, G. Kaichouh, K. Bouziane, A. Zarrouk, and A. Guessous, J. Energy Storage, 2022, 50, 104677. 
  155. B. Yan, D. Bin, F. Ren, Z. Xiong, K. Zhang, C. Wang, and Y. Du, Catalysts, 2016, 6(12), 198. 
  156. S. Ma, D. Xiang, Y. Wang, X. Hao, H. Li, Z. Liu, T. Zhang, J. Yang, and G. Zhang, Asia-Pacific J. Chem. Eng., 2022, 17(2), e2749. 
  157. P. K. Katkar, S. J. Marje, V. G. Parale, C. D. Lokhande, J. L. Gunjakar, H.-H. Park, and U. M. Patil, Langmuir, 2021, 37(17), 5260-5274. 
  158. S. Alam and M. Z. Iqbal, Ceram. Int., 2021, 47(8), 11220-11230. 
  159. M. Liu, N. Shang, X. Zhang, S. Gao, C. Wang, and Z. Wang, J. Alloys Compd., 2019, 791, 929-935. 
  160. T. A. Raja, P. Vickraman, A. S. Justin, and B. J. Reddy, Phys. Status Solidi A, 2020, 217(5), 1900736.
  161. D. Kim, J. Kang, B. Yan, K. Seong, and Y. Piao, ACS Sustain. Chem. Eng., 2020, 8(7), 2843-2853. 
  162. J. Ling, H. Zou, W. Yang, K. Lei, and S. Chen, J. Mater. Sci. Mater. Electron., 2019, 30, 18088-18100. 
  163. J.-J. Li., M.-C. Liu., L.-B. Kong, D. Wang, Y.-M. Hu, W. Han, and L. Kang, RSC Adv., 2015, 5, 41721-41728. 
  164. S. J. Marje, P. K. Katkar, S. S. Pujari, S. A. Khalate, P. R. Deshmukh, and U. M. Patil, Mater. Sci. Eng. B, 2020, 261, 114641. 
  165. H. Peng, J. Zhou, Z. Chen, R. Zhao, J. Liang, F. Wang, G. Ma, and Z. Lei, J. Alloys Compd., 2019, 797, 1095-1105. 
  166. J. Hao, X. Zou, L. Feng, W. Li, B. Xiang, Q. Hu, X. Liang, and Q. Wu, J. Colloid Interface Sci., 2021, 583, 243-254. 
  167. S. J. Marje, V. V. Patil, V. G. Parale, H.-H. Park, P. A. Shinde, J. L. Gunjakar, C. D. Lokhande, and U. M. Patil, Chem. Eng. J., 2021, 429, 132184.