• 제목/요약/키워드: Open loop response

검색결과 92건 처리시간 0.025초

루프 전달 회복을 통한 이중 적분 모터의 무진동 제어 (Vibration-free Control of Double Integrator Typed Motor via Loop Transfer Recovery)

  • 서상민
    • 한국소음진동공학회논문집
    • /
    • 제20권10호
    • /
    • pp.900-906
    • /
    • 2010
  • This note proposes vibration-free motor control through modified LQG/LTR methodology. A conventional LQG/LTR method is a design tool in the frequency domain. However, unlike the conventional one, the proposed one is a time response based design method. This feature is firstly designed by parameterized settling time control gain through the target loop design procedure and the feature is secondly realized by loop transfer recovery. In order to show convergence to the target loop transfer functions, asymptotic behaviors of the open and the closed loop transfer functions are shown. At the conclusion, it is verified that the proposed method is robustly stable to parametric uncertainties through ${\mu}$-plot.

수직 다관절 로봇의 동적 특성을 고려한 Gain Tuning 연구 (6-Axes Articulated Robot Manipulator's Gain Tuning in consideration of dynamic specific)

  • 김효곤;정원지;김기정;김규탁;서영교;이기상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.744-747
    • /
    • 2005
  • This research studied 6-Axes Articulated Robot Manipulator's gain Tuning in consideration of dynamic. First of all, search fur proportional gain of velocity control loop by dynamic signal analyzer. Proportional gain of velocity control loop is connected to dynamic signal analyzer. Next Select free Proportional Gain value. And Select amplitude X of sinusoidal properly so that enough Velocity Feedback Signal may be paid as there is no group to utensil department. Next step, We can get Bode Diagram of Closed loop transfer function response examination in interested frequency. Integral calculus for gain of velocity loop is depended on integral calculus correction's number. We can obtain open loop transfer function by integrator. And we can know bode diagram's special quality from calculated open loop transfer function. With this, Velocity Control Loop's Parameter as inner loop is controlled. Next In moving, when vibration occurs, it controls notch filter. And finally, we have to control fred-forward filter parameter for elevation of control performance.

  • PDF

이차 이산 시스템의 Peak Overshoot을 최소화하기 위한 영점의 위치 설계 (Design of the Zero Location for Minimizing the Peak Overshoot of Second-Order Discrete Systems)

  • 이재석;정태상
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권11호
    • /
    • pp.483-493
    • /
    • 2002
  • The damping ratio ${\xi}$ of the unit-step response of a second-order discrete system is a function of only the location of the closed-loop poles and is not directly related to the location of the system zero. However, the peak overshoot of the response is the function of both the damping ratio ${\xi}$ and an angle ${\alpha}$, which is the phasor angle of the damped sinusoidal response and is determined by the relative location of the zero with respect to the closed-loop poles. Therefore, if the zero and the open-loop poles are relatively adjusted, through pole-zero cancellation, to maintain the desired (or designed) closed-loop poles, the damping ratio ${\xi}$ will also be maintained, while the angle ${\alpha}$ changes. Accordingly, when the closed-loop system poles are fixed, the peak overshoot is considered as a function of the angle ${\alpha}$ or the system zero location. In this paper the effects of the relative location of the zero on the system performance of a second-order discrete system is studied, and a design method of digital compensator which achieves a minimum peak overshoot while maintaining the desired system mode and the damping ratio of the unit step response is presented.

시간최적제어 기법을 이용한 계단응답 실험시간 단축 방법 (Experimental Test Time Reduction Method for Step Responses Using the Time-Optimal Control Technique)

  • 이지태
    • Korean Chemical Engineering Research
    • /
    • 제58권2호
    • /
    • pp.190-196
    • /
    • 2020
  • 공정 실험을 통하여 공정 동특성 모델을 얻는 과정은 제어시스템 설계에 있어 시간과 비용이 드는 매우 중요한 과정이다. 이를 위한 계단응답은 공정의 동특성을 이해하고 동특성 모델을 얻는 데 사용되는 오래된 하나의 정형화된 공정응답이다. 계단응답에 근거한 방법에서는 공정입력에 계단 변화를 주었을 때 나타나는 공정출력을 측정하여야 하는데, open-loop 상태로 장시간 운전해야 하는 것이 단점으로 지적된다. 이 단점을 완화하기 위하여 시간최적제어 기법을 이용하는 계단응답을 얻는 시간을 최소화 하는 방법이 제안되어 있다. 이 최적화에는 반복 계산이 필요한데, 여기서는 반복 계산이 필요 없는 방법을 제안한다. 계단응답을 위한 시간이 획기적으로 줄어드는 것을 보여주는 모사 결과들을 얻었으며, 이 방법을 제어기 자동튜닝에 응용하여 이 자동튜닝에 널리 채택되고 있는 relay feedback 자동튜닝과 비교한 모사 결과들을 제시하였다.

적분 공정 제어를 위한 향상된 DMC (Improved DMC for the integrating process)

  • 강병삼;한종훈;장근수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1120-1123
    • /
    • 1996
  • DMC(Dynamic Matrix Control) algorithm has been successfully used in industries for more than a decade. It can handle constraints and easily extended to MIMO case. The application of DMC, however, is limited to the open loop stable process because it uses the FIR(Finite Impulse Response) or FSR(Finite Step Response) model. Integrating process widely used in chemical process industry, is the representative open loop unstable process. The disturbance rejection of DMC is relatively poor due to the assumption that the current disturbance is equivalent to the future disturbance. We propose the IDMC(Improved Dynamic Matrix Control) for the integrating process, as well as non-integrating process. IDMC has shown better disturbance rejection using multi-step ahead predictor for the disturbance.

  • PDF

개루프 전달함수 주파수영역 해석에 의한 $H{\infty}$ 최적 제어기의 견실성 및 성능 개선 ($H{\infty}$ optimal controller robustness and performance improvement by frequency domain analysis of open loop transfer function)

  • 김용규;유창근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.761-763
    • /
    • 1999
  • When the controller designed by the $H{\infty}$ control technique is applied to the object system, sometimes the controller does not satisfy the robust stability and robust performance but only satisfy the nominal performance. In this paper, we derive the region on the frequency response curve of the open-loop transfer function which satisfy the robustness and robust performance of the designed controller. We also derive the region for the suitableness of the weighting function on the frequency response curve of the weighting function. We showed that the robust stability and the robust performance of the $H{\infty}$ optimal control)or by applying the designed controller on an electromechanical actuator system could be improved by determining parameter ${\gamma}$ and weighting function gain ${\alpha}$ using the derived region.

  • PDF

Open-Loop Responses of Droplet Vaporization to Linear Normal Acoustic Modes

  • Kim, S.Y.;W.S. Yoon
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.155-164
    • /
    • 2004
  • In order for studying pressure-coupled dynamic responses of droplet vaporization, open-loop experiment of an isolated droplet vaporization exposed to pressure perturbations in stagnant gaseous environment is numerically conducted, Governing equations are solved for flow parameters at gas and liquid phases separately and thermodynamic parameters at the interfacial boundary are matched for problem closure. For high-pressure effects, vapor-liquid interfacial thermodynamics is rigorously treated. A series of parametric calculations in terms of mean pressure level and wave frequencies are carried out employing a n-pentane droplet in stagnant gaseous nitrogen. Results show that wave instability in view of pressure-coupled vaporization response seems more susceptible at higher pressures and higher wave frequencies. Mass evaporation rate responding to pressure waves is amplified with increase in pressure due to substantial reduction in latent heat of vaporization. Augmentation of perturbation frequency also enhances amplification due to the reduction of phase differences between pressure perturbation and surface temperature fluctuation.

  • PDF

궤환 제어를 이용한 시스템 규명 (System identification using the feedback loop)

  • 정훈상;박영진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.409-412
    • /
    • 2001
  • Identification of systems operating in closed loop has long been of prime interest in industrial applications. The fundamental problem with closed-loop data is the correlation between the unmeasurable noise and the input. This is the reason why several methods that work in open loop fail when applied to closed-loop data. The prediction error based approaches to the closed-loop system are divided to direct method and indirect method. Both of direct and indirect methods are known to be applied to the closed-loop data without critical modification. But the direct method induces the bias error in the experimental frequency response function and this bias error may deteriorates the parameter estimation performance

  • PDF

신경 회로망을 이용한 증기 발생기의 폐 루프 시스템 규명 (Closed Loop System Identification of Steam Generator Using Neural Networks)

  • 박종호;한후석;정길도
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.78-86
    • /
    • 1999
  • The improvement of the water level control is important since it will prevent the steam generator trip so that improve the reliability and credibility of operation system. In this paper, the closed loop system identification is performed which can be used for the system monitoring and prediction of the system response. The model also can be used for the prediction control. Irving model is used as a steam generator model. The plant is an open loop unstable and non-minimum phase system. Fuzzy controller stabilize the system and the stable controller stabilize the system and the stable closed loop system is identified using neural networks. The obtained neural network model is validated using the untrained input and output. The results of computer simulation show the obtained Neural Network model represents the closed loop system well.

  • PDF

전륜 인휠모터 후륜구동 차량의 선회 특성 변형을 위한 요모멘트 제어 (Yaw Moment Control for Modification of Steering Characteristic in Rear-driven Vehicle with Front In-wheel Motors)

  • 차현수;좌은혁;박관우;이경수;박재용
    • 자동차안전학회지
    • /
    • 제13권1호
    • /
    • pp.6-13
    • /
    • 2021
  • This paper presents yaw moment control for modification of steering characteristic in rear-driven vehicle with front in-wheel motors (IWMs). The proposed control algorithm is designed to modify yaw rate response of the test vehicle. General approach for modification of steering characteristic is to define the desired yaw rate and track the yaw rate. This yaw rate tracking method can cause the chattering problem because of the IWM actuator response. Large overshoot and settling time in IWM torque response can amplify the oscillation in control input and yaw rate. To resolve these problems, open-loop IWM controller for cornering agility was designed to modify the understeer gradient of the vehicle. The proposed algorithm has been investigated via the computer simulations and the vehicle tests. The performance evaluation has been conducted on dry asphalt using E-segment test vehicle. The performance of the proposed algorithm has been compared to general yaw rate tracking algorithm in the vehicle tests. It has been shown that the proposed control law improved the cornering agility without chattering problem.