• Title/Summary/Keyword: Open loop

Search Result 852, Processing Time 0.021 seconds

Comparative Study between Two and Single-loop Control of Boost Converter for PVPCS (태양광용 부스트 컨버터의 2중 루프 제어 및 단일 루프 제어의 특성 비교)

  • Kim, Dong-Whan;Im, Ji-Hoon;Song, Seung-Ho;Choi, Ju-Yeop;An, Jin-Ung;Lee, Sang-Chul;Lee, Dong-Ha
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.153-159
    • /
    • 2012
  • In photovoltaic system, the characteristic of photovoltaic module such as open circuit voltage and short circuit current will be changed because of cell temperature and solar radiation. Therefore, a boost converter of the PV system connects between the output of photovoltaic system and DC link capacitor of grid connected inverter as controlling duty ratio for maximum power point tracking(MPPT). This paper shows the dynamic characteristic of the boost converter by comparing single-loop control algorithm and two-loop control algorithm using both analog and digital control. The proposed both compensation method has been verified with computer simulation and simulation results obtained demonstrate the validity of the proposed control schemes.

  • PDF

A Strategy to Evaluate Semi-Active Suspension System using Real-Time Hardware-in-the-Loop Simulation (실시간 Hardware-in-the-Loop 시뮬레이션을 이용한 반능동 현가시스템 특성 평가)

  • Choi, G.J.;Noh, K.H.;Yoo, Y.M.;Kim, H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.186-194
    • /
    • 2001
  • To meet the challenge of testing increasingly complex automotive control systems, the real-time hardware-in-the-loop(HIL) simulation technology has been developed. In this paper, a strategy for evaluation of semiactive suspension systems using real-time HIL simulation is presented. A multibody vehicle model is adopted to simulate vehicle dynamic motions accurately. Accuracy of the vehicle simulation results is compared to that of the real vehicle field test and proven to be very accurate. The controller and stepping motor to adjust semi-active damper stage are equipped as external hardwares and connected to the real-time computer which has vehicle dynamic model. Open and closed loop test methods are used to evaluate a controlled suspension system and the system's operations are verified it is found that the proposed evaluation methods can be used well for the verification of semi-active suspension systems.

  • PDF

Design of a Low Phase Noise Vt-DRO Based on Improvement of Dielectric Resonator Coupling Structure (유전체 공진기 결합 구조 개선을 통한 저위상 잡음 전압 제어 유전체 공진기 발진기 설계)

  • Son, Beom-Ik;Jeong, Hae-Chang;Lee, Seok-Jeong;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.691-699
    • /
    • 2012
  • In this paper, we present a Vt-DRO with a low phase noise, which is achieved by improving the coupling structure between the dielectric resonator and microstrip line. The Vt-DRO is a closed-loop type and is composed of 3 blocks; dielectric resonator, phase shifter, and amplifier. We propose a mathematical estimation method of phase noise, using the group delay of the resonator. By modifying the coupling structure between the dielectric resonator and microstrip line, we achieved a group delay of 53 nsec. For convenience of measurement, wafer probes were inserted at each stage to measure the S-parameters of each block. The measured S-parameter of the Vt-DRO satisfies the open-loop oscillation condition. The Vt-DRO was implemented by connecting the input and output of the designed open-loop to form a closed-loop. As a result, the phase noise of the Vt-DRO was measured as -132.7 dBc/Hz(@ 100 kHz offset frequency), which approximates the predicted result at the center frequency of 5.3 GHz. The tuning-range of the Vt-DRO is about 5 MHz for tuning voltage of 0~10 V and the power is 4.5 dBm. PFTN-FOM is -31 dBm.

Magnetic Resonant Wireless Power Transfer with L-Shape Arranged Resonators for Laptop Computer

  • Choi, Jung Han;Kang, Seok Hyon;Jung, Chang Won
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.126-132
    • /
    • 2017
  • In this study, we designed, measured, and analyzed a rearranged L-shape magnetic resonance coupling wireless power transfer (MR-WPT) system for practical applications with laptops. The typical four resonator MR-WPT (Tx part: source loop and Tx coil; Rx part: Rx coil and load loop) is difficult to apply to small-sized stationary and mobile applications, such as laptop computers, tablet-PCs, and smartphones, owing to the large volume of the Rx part and the spatial restrictions of the Tx and Rx coils. Therefore, an L-shape structure, which is the orthogonal arrangement of the Tx and Rx parts, is proposed for indoor environment applications, such as at an L-shaped wall or desk. The relatively large Tx part and Rx coil can be installed in the wall and the desk, respectively, while the load loop is embedded in the small stationary or mobile devices. The transfer efficiency (TE) of the proposed system was measured according to the transfer distance (TD) and the misaligned locations of the load loop. In addition, we measured the TE in the active/non-active state and monitor-open/closed state of the laptop computer. The overall highest TE of the L-shape MR-WPT was 61.43% at 45 cm TD, and the TE decreased to 27.9% in the active and monitor-open state of the laptop computer. The conductive ground plane has a much higher impact on the performance when compared to the impact of the active/non-active states. We verified the characteristics and practical benefits of the proposed L-shape MR-WPT compared to the typical MR-WPT for applications to L-shaped corners.

Design of a simple closed-loop Transmit Diversity Scheme Using Sub-carrier Grouping for ECMA-392 Systems (ECMA-392 시스템을 위한 부 반송파 그룹핑 기반 폐루프 전송 다이버시티 기법 설계)

  • Joo, Jung Suk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.3-9
    • /
    • 2014
  • ECMA-392 is the first cognitive radio (CR) specification for personal/portable devices in TV white space. It supports two transmit antennas, for which only open-loop transmit diversity schemes are included. In this paper, we design a simple closed-loop transmit diversity scheme using sub-carrier grouping for ECMA-392 systems. First, sub-carrier grouping types suitable for ECMA-392 systems are described, and then a transmit antenna selection scheme is proposed. In order to reduce feedback information, decision on the transmit antenna selection in the given channel environments is made at the receiver side and the only index of the decided transmit antenna is sent to the transmit side. Through performance comparison to open-loop transmit diversity schemes of ECMA-392, it will be shown that with only a slight feedback overhead, the proposed scheme can improve receiver performance of ECMA-392 systems.

Volumetric-Modulated Arc Radiotherapy Using Knowledge-Based Planning: Application to Spine Stereotactic Body Radiotherapy

  • Jeong, Chiyoung;Park, Jae Won;Kwak, Jungwon;Song, Si Yeol;Cho, Byungchul
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.94-103
    • /
    • 2019
  • Purpose: To evaluate the clinical feasibility of knowledge-based planning (KBP) for volumetric-modulated arc radiotherapy (VMAT) in spine stereotactic body radiotherapy (SBRT). Methods: Forty-eight VMAT plans for spine SBRT was studied. Two planning target volumes (PTVs) were defined for simultaneous integrated boost: PTV for boost (PTV-B: 27 Gy/3fractions) and PTV elective (PTV-E: 24 Gy/3fractions). The expert VMAT plans were manually generated by experienced planners. Twenty-six plans were used to train the KBP model using Varian RapidPlan. With the trained KBP model each KBP plan was automatically generated by an individual with little experience and compared with the expert plan (closed-loop validation). Twenty-two plans that had not been used for KBP model training were also compared with the KBP results (open-loop validation). Results: Although the minimal dose of PTV-B and PTV-E was lower and the maximal dose was higher than those of the expert plan, the difference was no larger than 0.7 Gy. In the closed-loop validation, D1.2cc, D0.35cc, and Dmean of the spinal cord was decreased by 0.9 Gy, 0.6 Gy, and 0.9 Gy, respectively, in the KBP plans (P<0.05). In the open-loop validation, only Dmean of the spinal cord was significantly decreased, by 0.5 Gy (P<0.05). Conclusions: The dose coverage and uniformity for PTV was slightly worse in the KBP for spine SBRT while the dose to the spinal cord was reduced, but the differences were small. Thus, inexperienced planners could easily generate a clinically feasible plan for spine SBRT by using KBP.

Parameter Identification of Vector-Controlled Induction Motor using Skin Effect of Rotor Bars at Standstill (회전자 바의 표피효과를 이용한 벡터제어용 유도전동기의 정지형 상수추정)

  • Kwon, Young-Su;Moon, Sang-Ho;Lee, Jeong-Hum;Kwon, Byung-Ki;Choi, Chang-Ho;Seok, Jul-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.403-410
    • /
    • 2008
  • This paper suggests a standstill estimator to accurately identify induction motor (IM) parameters necessary for the vector control. A mathematical model that faithfully represents the general skin effect is introduced. Then, two exciting signals with a different frequency are sequentially injected to track the parameters based on the skin effect of the rotor bar. Little knowledge of the unknown motor allows the proposed methodology to employ a closed-loop control of an injected current, rather than open-loop voltage injection approaches. Subsequently, this control scheme proactively prevents electrical accidents resulting from an inadequate open-loop voltage injection. We develop a specialized offline commissioning test to compensate the phase delay resulting from the drive, which significantly affects the precision of the IM parameters. The effectiveness of the identification technique is validated by means of experiments performed on the three different IMs.

A STUDY ON THE PATTERN OF MOVEMENT DURING RETRACTION OF MAXILLARY CENTRAL INCISOR BY FINITE ELEMENT METHOD (상악 중절치 후방 이동시의 이동양상에 관한 유한요소법적 연구)

  • Jang, Jae Wan;Sohn, Byung Wha
    • The korean journal of orthodontics
    • /
    • v.21 no.3
    • /
    • pp.617-634
    • /
    • 1991
  • The retraction of anterior teeth is one of the fundamental methods in orthodontic treatment and a proper position and angulation of anterior teeth after the retraction are very important for esthetics, stability, and function of teeth. In this research we analyzed, by Finite Element Method, the stress distribution on the periodontal ligament according to the variation of force and moment applied on the crown and predict the pattern of movement of maxillary central incisor. At the same time, the amount of force and moment caused by activation of the loop which was used for retraction of maxillary central incisor was analyzed by Finite Element Method. We observed the following results: 1) We could control the stress distribution on the periodontal ligament by proper moment/force ratio on maxillary right central incisor and predict the pattern of movement of maxillary right central incisor. 2) The amount of stress on the periodontal ligament as well as the moment/force ratio demanded by each pattern of movement increased as the destruction of alveolar bone was worse. 3) The moment/force ratio demanded by each pattern of movement decreased as the angle between the maxillary central incisor and occlusal plane decreased. 4) The force with the open loop was shown to be large compared to that with the closed loop. Also, the force with the helix decreased by 30% compared to that without the helix. 5) Under the same conditions we observed a larger moment/force ratio when the open loop and/or the helix were used.

  • PDF

The Characteristices of Step Responses of the Manabe Standard Forms and Its Application to the Controller Desegn (Manabe 표준형의 계단 응답 특성 및 제어기설계에의 응용)

  • Gang, Hwan-Il
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.586-592
    • /
    • 1999
  • We investigate the characteristic of 소데 responses of the Manabe standard form which is used recently for design of the controller. We obtain some theorems and these theorems have the properties of the relationship between the roots of the polynomial and the stability indices which are used for the Manabe standard form. The Manabe standard form has the following properties: The sum of the squal to zero, the sum of the reciprocal of the squared roots is greater than zero and the parameter $\tau$ is the negative value of the sum of the reciprocal of the roots. We compare the step responses of the Manabe standard form with those of the ITAE form, the dead beat response and Bessel forms. We choose the 6th order closed loop polynomial and keep the same settling time for the four forms. Under these conditions we find that the Manabe standard form have faster 90% rising time than the Bessel and dead beat response. We see that the ITAE, bessel and dead beat responses have some overshoot, whereas the Manabe standard form has none. We also compare the Manabe form with the other three forms for the controller design using the pole assignment technique. If the open loop transfer function is a type-1 system (transfer functions having one integrator), then, for the closed loop system associated with the open loop transfer function, the steady state error of the unit ramp input is obtained in terms of the parameter $\tau$ of the Manabe standard form.

  • PDF

A Clock System including Low-power Burst Clock-data Recovery Circuit for Sensor Utility Network (Sensor Utility Network를 위한 저전력 Burst 클록-데이터 복원 회로를 포함한 클록 시스템)

  • Song, Changmin;Seo, Jae-Hoon;Jang, Young-Chan
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.858-864
    • /
    • 2019
  • A clock system is proposed to eliminate data loss due to frequency difference between sensor nodes in a sensor utility network. The proposed clock system for each sensor node consists of a bust clock-data recovery (CDR) circuit, a digital phase-locked loop outputting a 32-phase clock, and a digital frequency synthesizer using a programmable open-loop fractional divider. A CMOS oscillator using an active inductor is used instead of a burst CDR circuit for the first sensor node. The proposed clock system is designed by using a 65 nm CMOS process with a 1.2 V supply voltage. When the frequency error between the sensor nodes is 1%, the proposed burst CDR has a time jitter of only 4.95 ns with a frequency multiplied by 64 for a data rate of 5 Mbps as the reference clock. Furthermore, the frequency change of the designed digital frequency synthesizer is performed within one period of the output clock in the frequency range of 100 kHz to 320 MHz.