• Title/Summary/Keyword: Open kinematic chain

Search Result 19, Processing Time 0.02 seconds

A new kinematic formulation of closed-chain mechanisms with redundancy and its applications to kinematic analysis

  • Kim, Sungbok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.396-399
    • /
    • 1995
  • This paper presents a new formulation of the kinematics of closed-chain mechanisms and its applications to obtaining the kinematic solutions and analyzing the singularities. Closed-chain mechanisms under consideration may have the redundancy in the number of joints. A closed-chain mechanism can be treated as the parallel connection of two open-chains with respect to a point of interest. The kinematics of a closed-chain mechanism is then obtained by imposing the kinematic constraints of the closed-chain on the kinematics of the two open-chains. First, we formulate the kinematics of a closed-chain mechanism using the kinematic constraint between the controllable active joints and the rest of joints, instead of the kinematic constraint between the two open-chains. The kinematic formulation presented in this paper is valid for closed-chain mechanisms with and without the redundancy. Next, based on the derived kinematics of a closed-chain mechanism, we provide the kinematic solutions which are more physically meaningful and less sensitive to numerical instability, and also suggest an effective way to analyze the singularities. Finally, the computational cost associated with the kinematic formulation is analyzed.

  • PDF

The Effect of PNF Arm Flexion Pattern on the Muscle Activation of Lower Extremity by Kinematic Chain Positions (사슬운동 자세에 따른 고유수용성신경근촉진법 팔 패턴이 다리의 근활성도에 미치는 효과)

  • Kim, Hee-Gwon;Seo, Yeon-Soon
    • PNF and Movement
    • /
    • v.13 no.2
    • /
    • pp.95-102
    • /
    • 2015
  • Purpose: The purpose of this study was to analyze the effect of arm flexion patterns of proprioceptive neuromuscular facilitation on muscle activation in the contralateral lower extremity. Open kinematic chain and closed kinematic chain positions were used. Methods: This study used an electromyogram (MP150, Biopac Systems, USA) to measure muscle activation in 20 healthy male students. Comparative analysis was completed on muscle activation of the vastus lateralis, biceps femoris, tibialis anterior, and gastrocnemius of the contralateral lower extremity. Open kinematic chain and closed kinematic chain positions were used with a unilateral arm flexion-abduction-external rotation pattern. Paired t-tests using the SPSS 12.0 for Windows analyzed the data produced by the electromyogram. Results: There was a statistically significant difference in muscle activation in the biceps femoris, gastrocnemius, and tibialis anterior when the open kinematic chain and closed kinematic chain positions were compared (p < 0.05). Conclusion: The biceps femoris, gastrocnemius, and tibialis anterior muscles showed greater muscle activation in the closed kinematic chain position when compared to the open kinematic chain position.

Kinematic Calibration and the Product of Exponentials Formula (Product-of-Exponentials 공식을 기초로 한 기구학적 보정 방법)

  • Park, F.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.88-97
    • /
    • 1994
  • We persent a method for kinematic calibration of open chain mechanisms based on the product of exponentials (POE) formula. The POE formula represents the forward kinematics of an open chain as a product of matrix exponentials, and is based on a modern geometric interpretation of classical screw theory. Unlike the kinematic parameters in the POE formula vary smoothly with changes in the joint axes;ad hoc methods designed to address the inherent singularities in the D-H parameters are therefore are therefore unnecessary. After introducing the POE formula, we derive a least-squares kinematic calibration algorithm for general open chain mechanisms. Simulation results with a 6-axis open chain are presented.

  • PDF

The Effect of Self-Controlled Knowledge of Result on Proprioception Learning in Knee Joint During Open and Closed Kinematic Chain Movement (자기통제 결과지식이 무릎 관절의 열린 사슬 자세와 닫힌 사슬 자세의 고유수용성감각의 장.단기적 학습에 미치는 영향)

  • Lee, Yoen-Chul;Lee, Sang-Yeol;Park, Kwan-Yong
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.4 no.2
    • /
    • pp.93-100
    • /
    • 2009
  • Purpose:The purpose of this study was to examine the effects of self-controlled knowledge of result (KR) versus the yoked KR on learning of knee joint proprioception. Methods:Forty volunteer subjects (20 men and 20 women) were randomly assigned to each four groups: 1) self-controlled KR in open kinematic chain, 2) yoked KR in open kinematic chain, 3) self controlled KR in close kinematic chain, and 4) yoked KR in close kinematic chain. The difference between the angle of position and reproduction angle was determined as a proprioception error and measured using an angle reproduction test. The subjects in self-controlled groups were provided with feedback whenever they requested it, whereas the subjects in yoked groups were not provided with feedback. The data were analyzed using a one-way ANOVA. Results:The proprioception errors in close kinematic chain groups decreased significantly compared with those in close kinematic chain groups(p<.05). The proprioception errors in the self-controlled group decreased significantly compared with those in yoked groups during acquisition and retention test(p<.05). Conclusion:Self-controlled knowledge of result during open kinematic chain movement is considered to be a good method on motor learning.

  • PDF

Comparisons of Accuracy of Knee Joint Motion During Closed verse Open Kinetic Chain Tasks in Subjects with Flexible Flatfeet

  • Kim, Ju Sang;Kwon, Younghyun;Lee, Mi Young
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.1
    • /
    • pp.13-17
    • /
    • 2019
  • Purpose: This study examined the effects of flexible flatfeet on the accuracy of knee joint motions in closed and open kinetic chain tasks. Methods: Twenty-four healthy participants were recruited for this study. The subjects were divided into two groups using a navicular drop (ND) test: flexible flatfoot group (n=12, male: 6, aged $22.00{\pm}2.22years$) and age-matched control group (n=12, males: 6, aged $22.17{\pm}1.53years$). The accuracy of knee motion was measured quantitatively by tracing through the flexion and extension motion of the knee joints in the closed kinetic chain and the open kinetic chain. Results: There was a significant difference in the accuracy index between the groups in closed kinetic chain task, but there was no significant difference in the open kinetic chain task. In addition, there was a significant difference in the accuracy index between the closed kinetic chain and the open kinetic chain task in the flexible flatfoot group. In addition, a significant negative correlation was observed between the ND and accuracy index in the closed kinematic chain task, but there was no significant relationship between the ND and accuracy index in the open kinematic chain task. Conclusion: Flexible flatfeet can affect the accuracy of the adjacent joints, such as the knee joint in the closed kinematic chain.

Dynamic Analysis of a Chain of Rigid Rods

  • Attia, Hazem Ali
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.8 no.2
    • /
    • pp.75-86
    • /
    • 2004
  • In this study, a recursive algorithm for generating the equations of motion of a chain of rigid rods is presented. The methods rests upon the idea of replacing the rigid body by a dynamically equivalent constrained system of particles. The concepts of linear and angular momentums are used to generate the rigid body equations of motion without either introducing any rotational coordinates or the corresponding transformation matrices. For open-chain, the equations of motion are generated recursively along the serial chains. For closed-chain, the system is transformed to open-chain by cutting suitable kinematic joints with the addition of cut-joints kinematic constraints. An example of a closed-chain of rigid rods is chosen to demonstrate the generality and simplicity of the proposed method.

  • PDF

The Role of Kinematics in Robot Development (로봇발전과 기구학의 역할)

  • Youm, Youngil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.3
    • /
    • pp.333-344
    • /
    • 2014
  • This is the survey paper on the role of kinematics in robot development. The robot is considered as a form of mechanical systems which includes closed-chain loop system, open-chain loop system and closed and open switching system. To analyze these systems, kinematic notations has been developed in kinematics of mechanical theory since 1955 and has been applied in robotics. Several kinematic notations including Denavit-Hartenberg notations have been reviewed. The status of development of the spherical motor which has a great impact on the future robot advancement has reviewed, and research activity on a spherical motor and its application to 3-D spatial mechanisms at UNIST is introduced. For the open and closed switching mechanical systems, the bipedal robots' walking theories using Zero Moment Point are reviewed. And current status regarding bipedal robots based on newly developed passive dynamic walking theory is reviewed with the research activity at UNIST on this subject.

Dynamic Analysis of Multi-Robot System Forcing Closed Kinematic Chain (복수로봇 시스템의 동력학적 연구-대상물과 닫힌 체인을 형성할때의 문제-)

  • 유범상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1023-1032
    • /
    • 1995
  • The multiple cooperating robot system plays an important role in the research of modern manufacturing system as the emphasis of production automation is more on the side of flexibility than before. While the kinematic and dynamic analysis of a single robot is performed as an open-loop chain, the dynamic formulation of robot in a multiple cooperating robot system differs from that of a single robot when the multiple cooperating robots form a closed kinematic chain holding an object simultaneously. The object may be any type from a rigid body to a multi-joint linkage. The mobility of the system depends on the kinematic configuration of the closed kinematic chain formed by robots and object, which also decides the number of independent input parameters. Since the mobility is not the same as the number of robot joints, proper constraint condition is sought. The constraints may be such that : the number of active robot joints is kept the same as mobility, all robot joints are active and have interrelations between each joint forces/torques, two robots have master-slave relation, or so on. The dynamic formulation of system is obtained. The formulation is based on recursive dual-number screw-calculus Newton-Eulerian approach which has been used for single robot analysis. This new scheme is recursive and compact symbolically and may facilitate the consideration of the object in real time.

A Dynamic Decoupling of Two Cooperating Robot System and Stability Analysis (협조로보트 시스템의 동적 Decoupling과 안정도연구)

  • 최형식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.37-43
    • /
    • 1996
  • This paper presents a new control scheme for decoupling the dynamics of two coordinating robot manipulators. A simple full-state feedback scheme with configuration dependent gains can be devised to decouple the system dynamics such that the dynamics of each arm and that of an object held by the two arms is independent of one another. A condition for stability is shown. The advantage of the proposed scheme is that the same control scheme can be applied both for the closed kinematic chain(object-grasping) case and open kinematic chain(no object-grasping) case.

  • PDF

Symbolic Generation of Dynamic Equations and Modeling of a Parallel Robot (기호 운동방정식 생성과 병렬형 로봇 모델링)

  • Song, Sung-Jae;Cho, Byung-Kwan;Lee, Jang-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.35-43
    • /
    • 1996
  • A computer program for automatic deriving the symbolic equations of motion for robots using the programming language MATHEMATICA has been developed. The program, developed based on the Lagrange formalism, is applicable to the closed chain robots as well as the open chain robots. The closed chains are virtually cut open, and the kinematics and dynamics of the virtual open chain robot are analyzed. The constraints are applied to the virtually cut joints. As a result, the spatial closed chain robot can be considered as a tree structured open chain robot with kinematic constraints. The topology of tree structured open chain robot is described by a FATHER array. The FATHER array of a link indicates the link that is connected in the direction of base link. The constraints are represented by Lagrange multipliers. The parallel robot, DELTA, having three-dimensional closed chains is modeled and simulated to illustrate the approach.