• Title/Summary/Keyword: Open crack

Search Result 172, Processing Time 0.03 seconds

The Effect of Moving Mass on Dynamic Behavior of Cracked Cantilever Beam on Elastic Foundations (탄성기초 위에 놓인 크랙 외팔보의 동특성에 미치는 이동질량의 영향)

  • Ahn, Sung-Jin;Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.826-831
    • /
    • 2005
  • In this paper the effect of moving mass on dynamic behavior of cracked cantilever beam on elastic foundations is presented. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. That is, the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. The crack is assumed to be in the first mode of fracture. As the depth of the crack is increased, the tip displacement of the cantilever beam is increased. When the crack depth is constant the frequency of a cracked beam is proportional to the spring stiffness.

  • PDF

Dynamic Behavior of Rotating Cantilever Beam with Crack (크랙을 가진 회전 외팔보의 동특성해석)

  • Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.707-710
    • /
    • 2005
  • In this paper, we studied about the dynamic behavior of a cracked rotating cantilever beam. The influences of a rotating angular velocity, the crack depth and the crack position on the dynamic behavior of a cracked cantilever beam have been studied by the numerical method. The cracked cantilever beam is modeled by the Euler-Bernoulli beam theory. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The lateral tip displacement and the axial tip deflection of a rotating cantilever beam is more sensitive to the rotating angular velocity than the depth and position of crack. Totally, as the crack depth is increased, the natural frequency of a rotating cantilever beam is decreased in the first and second mode of vibration.

  • PDF

Stability of Rotating Cantilever Pipe Conveying Fluid with Crack (크랙을 가진 유체유동 회전 외팔 파이프의 안정성 해석)

  • Kim, Dong-Jin;Yoon, Han-Ik;Son, In-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.356-359
    • /
    • 2007
  • In this paper, the stability of a rotating cantilever pipe conveying fluid with a crack is investigated by the numerical method. That is, the influences of the rotating angular velocity, mass ratio and crack severity on the critical flow velocity for flutter instability of system are studied. The equations of motion of rotating pipe are derived using the Euler beam theory and the Lagrange's equation. The crack section of pipe is represented by a local flexibility matrix connecting two undamaged pipe segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. Generally, the critical flow velocity for flutter is proportional to the angular velocity and the depth of crack. Also, the critical flow velocity and stability maps of the rotating pipe system as a function of mass ratio for the changing each parameter are obtained.

  • PDF

Effect of Moving Mass on Dynamic Behavior of Cracked Cantilever Beam on Elastic Foundations (탄성기초 위에 놓인 크랙 외팔보의 동특성에 미치는 이동질량의 영향)

  • Ahn, Sung-Jin;Son, In-Soo;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1195-1201
    • /
    • 2005
  • In this paper, the effect of a moving mass on dynamic behavior of the cracked cantilever beam on elastic foundations is presented. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. That is, the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory The crack is assumed to be in the first mode of fracture. As the depth of crack is increased, the tip displacement of the cantilever beam is Increased. When the depth of crack is constant, the frequency of a cracked beam is proportional to the spring stiffness.

A Study on the Dynamic Behavior of Cracked Pipe Conveying Fluid Using Theory of Timoshenko Beam (티모센코 보이론을 적용한 크랙을 가진 유체유동 파이프의 동특성에 관한 연구)

  • 손인수;안성진;윤한익
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.958-963
    • /
    • 2003
  • In this paper a dynamic behavior of simply supported cracked pipe conveying fluid with the moving mass is presented. Based on the Timoshenko beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. And the crack is assumed to be in th first mode of fracture. As the depth of the crack and velocity of fluid are increased the mid-span deflection of the pipe conveying fluid with the moving mass is increased. As depth of the crack is increased, the effect that the velocity of the fluid on the mid-span deflection appears more greatly.

  • PDF

Comparative study on cracked beam with different types of cracks carrying moving mass

  • Jena, Shakti P.;Parhi, Dayal R.;Mishra, Devasis
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.797-811
    • /
    • 2015
  • An analytical-computational method along with finite element analysis (FEA) has been employed to analyse the dynamic behaviour of deteriorated structures excited by time- varying mass. The present analysis is focused on the comparative study of a double cracked beam with inclined edge cracks and transverse open cracks subjected to traversing mass. The assumed computational method applied is the fourth order Runge-Kutta method. The analysis of the structure has been carried out at constant transit mass and speed. The response of the structure is determined at different crack depth and crack inclination angles. The influence of the parameters like crack depth and crack inclination angles are investigated on the dynamic behaviour of the structure. The results obtained from the assumed computational method are compared with those of the FEA for validation and found good agreements with FEA.

Crack Coalescence in Rock Bridges under Uniaxial Compression (단축압축 하의 암석 브릿지에서의 균열 결합)

  • Park, Nam-Su;Jeon, Seokwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.2
    • /
    • pp.23-32
    • /
    • 2001
  • Rock masses are usually discontinuous in nature, as a result of various geological processes they have underdone and they contain rock joints and bridges. Crack propagation and coalescence processes mainly cause rock failures in tunnels. In this study, we focused on the crack initiation, propagation and coalescence process of rock materials containing two pre-existing open cracks arranged in different geometries. During uniaxial compression, wing crack initiation stress, wing crack propagation angle, and crack coalescence stress of Diastone gypsum and Yeosan Marble specimens were examined. And crack initiation, propagation, and coalescence processes were observed. Shear, tensile and mixed (shear+tensile) types of crack coalescence occurred. To compare the experimental results with Ashby & Hallam model, crack coalescence stress was normalized and it generally agreed with the experimental results.

  • PDF

Dynamic Modeling and Analysis of General Rotor Systems with Open Cracks (열린 균열이 있는 일반 회전체계의 동적 모델링 및 해석)

  • 홍성욱;최성환;이종원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.290-299
    • /
    • 2003
  • This paper presents an efficient modeling and dynamic analysis method for open cracked rotor bearing systems. An equivalent bending spring model is introduced to represent the structural weakening effect in the presence of cracks. The proposed modeling method is validated through a series of simulations and experiments. First, the proposed method Is rigorously compared with a commercial finite element code. Then, an experiment is performed to validate the proposed modeling method. Finally, a numerical example is introduced to demonstrate the possible application of the proposed method in the crack diagnosis for rotor systems.

An Efficient Dynamic Model of General Rotor Systems with Open Cracks (열린 균열이 있는 일반 회전체계의 효율적인 동적 모델)

  • 최성환;홍성욱;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.88-93
    • /
    • 2003
  • This paper presents an efficient dynamic modeling method for open cracked rotor-bearing systems. An equivalent bending spring model is introduced to represent the structural weakening effect in the presence of cracks. The proposed modeling method is validated through a series of simulations and experiments. First, the proposed method is rigorously compared with a commercial finite element code. Then, an experiment is performed to validate the proposed modeling method. Finally, a numerical example is introduced to demonstrate the possible application of the proposed method in the crack diagnosis fur rotor systems.

  • PDF

A study on the Modeling and Dynamic Analysis of Cracked Beam Structures (균열이 있는 보의 모델링 및 동적 해석에 관한 연구)

  • 홍성욱;김만달;이종원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.197-204
    • /
    • 2003
  • This paper presents an efficient modeling and dynamic analysis method for open cracked beam structures. An equivalent bending spring model is introduced to represent the structural weakening effect in the presence of cracks. The proposed method adopts the exact dynamic element method (EDEM) to avoid the inconvenience and numerical errors in association with re-meshing the structural model with the crack position changed. The proposed modeling method is validated through a series of simulation and experiments. First, the proposed method is rigorously compared with a commercial finite element code. Then, two kinds of experiments are performed to validate the proposed modeling method. Finally, a diagnostic scheme fur open cracked beam structures is proposed and demonstrated through a numerical example.