• Title/Summary/Keyword: Opc

Search Result 978, Processing Time 0.03 seconds

An Experimental Study on the Resistance of Nylon Fiber Reinforced Concrete to Chloride Ion Penetration (나일론섬유보강 콘크리트의 염소이온 침투 저항성에 대한 실험적 연구)

  • Jeon, Joong-Kyu;Moon, Jae-Heum;You, Jin-O
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.557-560
    • /
    • 2008
  • Fiber reinforcement has been being widely used in concrete to enhance the mechanical properties and to reduce the micro-cracking caused by plastic and drying shrinkage. While researches has been focused on the benefits of fiber reinforcement, the properties of fiber reinforced concrete are strongly dependent on the type, shape and the amount of fibers in concrete. In this study, the resistance of nylon fiber reinforced concrete against the chloride ion penetration was experimentally observed by NT Build 492. The test results showed that the addition of nylon fiber has little effect on the change of the resistivity of concrete to the chloride ion penetration.

  • PDF

Effect of MgO in Synthesis of Alinite Clinker (Alinite계 클링커 제조(製造) 시 MgO의 영향(影響))

  • Yoo, Kwang-Suk;Ahn, Ji-Whan;Han, Dong-Yoon;Cho, Kye-Hong;Oh, Myung-Hwan
    • Resources Recycling
    • /
    • v.18 no.3
    • /
    • pp.49-54
    • /
    • 2009
  • The effect of MgO in synthesis of alinite clinker was investigated. Clinker of alinite composition ratio and alintite clinker substituted for MgO of 3.77% were sintered at $760^{\circ}C$ and between $800^{\circ}C$ and $1,400^{\circ}C$ at the interval of $100^{\circ}C$. Synthesized phases and hydration heat of alinite clinker with MgO and without MgO were then investigated. As a result, alinite, CCA, ${\beta}-C_2S$ and f-CaO phases are synthesized in alinite clinker without MgO sintered at $1,300^{\circ}C$, while only alinite phase is synthesized in alinite clinker with MgO sintered at $1,300^{\circ}C$ with the highest synthesis rate. Heat evolution of alinite clinker with MgO has no induction period.

Effects of Incineration Waste Ash and Gypsum Substitution on the Properties of Blast Furnace Slag Mortar using Recycled Aggregate (소각장 애쉬 및 석고치환이 고로슬래그 미분말 기반 순환골재 모르타르의 물성에 미치는 영향)

  • Han, Min Cheol;Han, Dong Yeop;Lu, Liang Liang
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.2
    • /
    • pp.161-167
    • /
    • 2015
  • Nowadays, all the world face to the global warming problems due to the emission of $CO_2$. From the previous studies, recycled aggregates were used as an alkali activator in blast furnace slag to achieve zero-cement concrete, and favorable results of obtaining strength were achieved. In this study, gypsum and incineration waste ash were used as the additional alkali activation and effects of the gypsum and incineration waste ash to enhance the performance of the mortar were tested. Results showed that although the replacement ratio of 0.5% of incineration waste ash and 20% of anhydrous gypsum resulted in the low of mortar at the early age, while it improved the later strength and achieved the similar strength to that of conventional mortar (at 91 days).

Fundamental Properties of Concrete Using Liquid Type High Early Strength Agent with Water to Binder Ratio (물결합재비 변화에 따른 액상형 조강제를 사용한 콘크리트의 기초적 특성)

  • Noh, Sang-Kyun;Oh, Sang-Baek;Lee, Gun-Cheol;Lee, Mun-Hwan;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.57-60
    • /
    • 2007
  • This study is to discuss the effect of the liquid type high early strength agent considering early strength, developing strength, and economics of the concrete using admixtures. The powder type high early strength agent does not helpful because the field application is not available such as the problem of mixing process and rack of economics. To make up these subjects, the plain mixture contains the standard type AE water reducing agent, and the types of the agents are the standard type AE water reducing agent(P),liquid type high early strength agent(AD),poly carboxylate high early strength type AE water reducing agent(E1), and naphthalene + melamine high early strength type AE water reducing agent(E2). As the Contents of the agents, E1 and E2 is two types each cases, and P is one type to satisfy the target fluidity and air content, AD is three types as 0.5, 1.0,and 1.5%. In the case that AD is mixed, the fluidity is decreased, but air content is increased. For increasing strength of the early age, using OPC is more effective than FA and BS for increasing the early strength of the concrete, and if the air content is secure as plain, the effect of the developing strength can be increased because the air content is increased about 2% in the case that AD is used.

  • PDF

Investigation on the flexural behaviour of ferrocement pipes and roof panels subjected to bending moment

  • Alnuaimi, A.S.;Hago, A.W.;Al-Jabri, K.S.;Al-Saidy, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.503-527
    • /
    • 2009
  • This paper presents experimental results on the behaviour and ultimate load of fifteen pipes and six roof panels made of ferrocement. Additional results from three roof panels, carried out by others, are also compared with this research results. OPC cement, natural sand and galvanised iron wire mesh were used for the construction of 20 mm thick specimens. The pipe length was 2 m and roof panel length was 2.1 m. The main variables studied were the number of wire mesh layers which were 1, 2, 3, 4 and 6 layers, the inner pipe diameter which were 105, 210 and 315 mm, cross sectional shape of the panel which were channel and box sections and the depth of the edge beam which were 95 mm and 50 mm. All specimens were simply supported and tested for pure bending with test span of 600 mm at mid-span. Tests revealed that increasing the number of wire mesh layers increases the flexural strength and stiffness. Increasing the pipe diameter or depth of edge beam of the panel increases the cracking and ultimate moments. The change in the pipe diameter led to larger effect on ultimate moment than the effect of change in the number of wire mesh layers. The box section showed behaviour and strength similar to that of the channel with same depth and number of wire mesh layers.

A Study on the Factors Affecting the High Fluid Mortar Containing Ground Granulated Blast-furnace Slag (고로슬래그 미분말을 함유한 고유동 모르터의 유동성상에 미치는 영향 요인에 관한 연구)

  • Kim, Jae-Hun;Yoon, Sang-Chun;Jee, Nam-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.4
    • /
    • pp.145-152
    • /
    • 2002
  • High fluid concrete unlike OPC concrete is made with various material, and the phase of fresh concrete is considerably different. In order to understand fluidity phase and mix properties of high fluid concrete, concrete is required to access as suspension structure which consists of aggregate and paste. The focus of this paper is to analyze the test results and quantify the effect of mix proportions of mortar and fineness modulus of sand on the properties of fresh mortar. The effect of water-binder ratio. sand-binder ration. contents of ggbs (by mass of total cementitious materials). and various contents of water reducing agent on the yield stress and plastic viscosity of the mix is studied. Based on the experimental results, the fellowing conclusions can be drawn: (1) The mixing time needed for high fluid mortar was approximately two times more than that of ordinary portland mortar. (2) The fluidity phase of mortar could be explained by yield stress of mix and the fluidity of mortar. (3) As the content of ggbs increased, yield stress of mortar was decreased and plastic viscosity of it was increased. (4) For the high fluid mortar, it was appeared that sand-binder ratio should be below 1.5.

Effect of Fiber Addition for Improving the Properties of Lightweight Foamed Concrete (경량 기포콘크리트의 성능향상에 대한 섬유혼입의 영향)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.4
    • /
    • pp.383-389
    • /
    • 2015
  • The objective of this study is to develop mixture proportioning approach of crack controlled lightweight foamed concrete without using high-pressure steam curing processes, as an alternative to autoclaved lightweight concrete blocks (class 0.6 specified in KS). To control thermal cracks owing to hydration heat of cementitious materials, 30% ground granulated blast-furnace slag (GGBS) was used as a partial replacement of ordinary portland cement (OPC). Furthermore, polyvinyl alcohol (PVA) and polyamid (PA) fibers were added to improve the crack resistance of foamed concrete. The use of 30% GGBS reduced the peak value of hydration production rate measured from isothermal tests by 28% and the peak temperature of foamed concrete measured from semi-adiabatic hydration tests by 9%. Considering the compressive strength development, internal void structure, and flexural strength of the lightweight foamed concrete, the optimum addition amount of PVA or PA fibers could be recommended to be $0.6kg/m^3$, although PA fiber slightly preferred to PVA fiber in enhancing the flexural strength of foamed concrete.

Evaluation on the Deterioration and Resistance of Cement Matric due to Seawater Attack (시멘트 경화체의 해수침식에 의한 성능저하 및 저항성 평가)

  • 문한영;이승태;김홍삼
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.175-183
    • /
    • 2001
  • Immersion tests with artificial seawater were carried out to investigate the resistance to seawater attack of 5 types of cement matrices. From the results of compressive strength and length change, it was found that blended cement mortars due to mineral admixtures, were superior to portland cement mortars with respect to the resistance to seawater attack. Moreover, XRD analysis indicated that the peak intensity ratio of low heat portland cement(LHC) paste, in portland cement pastes, had better results, and so did that of blended cement Paste. Pore volume of pastes by mercury intrusion porosimetry method demonstrated that total pore volume of ordinary portland cement(OPC) paste had a remarkable increase comparing with that of other pastes. In case of immersion of artificial seawater, the use of ground granulated blast-furnace slag and fly ash, however, showed the beneficial effects of 56% and 32% in reduction of total pore volume, respectively.

Restrained Shrinkage Properties of Polypropylene Fiber Reinforced Rapid-Setting Cement Concrete (합성섬유보강 초속경 콘크리트의 구속건조수축 특성)

  • 원치문
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.76-82
    • /
    • 2002
  • The rapid-set cement concrete causes high hydration temperature and nay result in a high drying shrinkage and shrinkage-induced cracking. This problem may be fixed by incorporating polypropylene fibers in rapid-set cement concrete, because of increased toughness, resistance to impact, corrosion, fatigue, and durability. A series of concrete drving shrinkage tests was peformed in order to investigate the shrinkage properties of polypropylene fiber reinforced concrete with experimental variables such as concrete types, fiber reinforcement, W/C ratio, with and without restraint. Uni-axially restrained bar specimens were used for the restrained shrinkage tests. The results were as follows; The dry shrinkage of rapid-set cement concrete was much lessor than that oi OPC, probably because of smaller weight reduction rate by early hydration and strength development. The constraint and bridging effects caused by polypropylene fibers were great for the rapid-setting cement concrete when compared with that of plain concrete, and this resulted In increased resistance against tensile stress and cracking.

Estimation of Compressive Strength of Concrete Incorporating Fine Particle Cement Considering Blaine Fineness (분말도 변화를 고려한 미분시멘트 사용 콘크리트의 압축강도증진 해석)

  • Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.139-145
    • /
    • 2009
  • This study presents an estimation of the strength development of concrete considering the equivalent age using fine particle cement (FC), which is manufactured according to the classification process. Contents and W/B were considered as experimental parameters. The strength considering the equivalent age is gradually increased, and the deviation of the strength according to W/C is increased with decrease of W/C in accordance with the replacement of the fine particle cement. For estimating the apparent activation energy (Ea) considering setting time and blame fineness of cement, Ea of the FC based on setting time is calculated with $27.6{\sim}28.9$ KJ/mol, which is somewhat similar to that of OPC, while by applying Ea based on blame fineness, Ea is increased with increase of FC contents, and is calculated with $40{\sim}56$ KJ/mol. Good agreement is obtained by applying Ea based on setting time, while there was remarkable variation between calculated value and measured value when Ea based on blame fineness. Therefore, it is necessary to add influencing factors in existing Ea to enhance the accuracy of the estimation.