• 제목/요약/키워드: Online parameter learning

검색결과 25건 처리시간 0.028초

Robust Recurrent Wavelet Interval Type-2 Fuzzy-Neural-Network Control for DSP-Based PMSM Servo Drive Systems

  • El-Sousy, Fayez F.M.
    • Journal of Power Electronics
    • /
    • 제13권1호
    • /
    • pp.139-160
    • /
    • 2013
  • In this paper, an intelligent robust control system (IRCS) for precision tracking control of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The IRCS comprises a recurrent wavelet-based interval type-2 fuzzy-neural-network controller (RWIT2FNNC), an RWIT2FNN estimator (RWIT2FNNE) and a compensated controller. The RWIT2FNNC combines the merits of a self-constructing interval type-2 fuzzy logic system, a recurrent neural network and a wavelet neural network. Moreover, it performs the structure and parameter-learning concurrently. The RWIT2FNNC is used as the main tracking controller to mimic the ideal control law (ICL) while the RWIT2FNNE is developed to approximate an unknown dynamic function including the lumped parameter uncertainty. Furthermore, the compensated controller is designed to achieve $L_2$ tracking performance with a desired attenuation level and to deal with uncertainties including approximation errors, optimal parameter vectors and higher order terms in the Taylor series. Moreover, the adaptive learning algorithms for the compensated controller and the RWIT2FNNE are derived by using the Lyapunov stability theorem to train the parameters of the RWIT2FNNE online. A computer simulation and an experimental system are developed to validate the effectiveness of the proposed IRCS. All of the control algorithms are implemented on a TMS320C31 DSP-based control computer. The simulation and experimental results confirm that the IRCS grants robust performance and precise response regardless of load disturbances and PMSM parameters uncertainties.

선박용 발전기 시스템의 강인 적응형 전압 제어 (Robust Adaptive Voltage Control of Electric Generators for Ships)

  • 조현철
    • 제어로봇시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.326-331
    • /
    • 2016
  • This paper presents a novel robust adaptive AC8B exciter system against synchronous generators for ships. A PID (proportional integral derivative) control framework, which is a part of the AC8B exciter system, is simply composed of nominal and auxiliary control configurations. For selecting these proper parameter values, the former is conventionally chosen based on the experience and knowledge of experts, and the latter is optimally estimated via a neural networks optimization procedure. Additionally, we propose an online parameter learning-based auxiliary control to practically cope with deterioration of control performance owing to uncertainty in electric generator systems. Such a control mechanism ensures the robustness and adaptability of an AC8B exciter to enhance control performance in real-time implementation. We carried out simulation experiments to test the reliability of the proposed robust adaptive AC8B exciter system and prove its superiority through a comparative study in which a conventional PID control-based AC8B exciter system is similarly applied to our simulation experiments under the same simulation scenarios.

점진적 광자 매핑을 위한 기울기 계산 기법 (Gradient Estimation for Progressive Photon Mapping)

  • 전동희;구정민;문보창
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제30권3호
    • /
    • pp.141-147
    • /
    • 2024
  • 점진적 광자 매핑 방식은 복잡한 전역 조명 효과를 효율적으로 렌더링할 수 있다. 그러나 샘플이 유한한 경우, 반경 축소비율 변수에 의해 분산과 편향 값이 크게 영향 받는다. 유한한 샘플을 사용한 렌더링 결과의 픽셀 오류 및 기울기를 추정하여 추정된 기울기를 기반으로 반경 축소비율을 결정하는 최적의 매개변수를 학습할 수 있다면, 렌더링 된 이미지의 오류를 줄일 수 있을 것이다. 본 논문에서는 점진적 광자 매핑 방식을 통한 렌더링과 매개변수 학습이 동시에 될 수 있도록 기울기를 추정하고 추정된 기울기를 유한 차분법을 통해 계산된 기울기와 비교하여 검증한다. 본 논문에서 추정된 기울기는 향후 점진적 광자 매핑 방식의 렌더링과 매개변수 추정을 동시에 수행하는 온라인 학습 알고리즘에 적용될 수 있을 것으로 기대된다.

진동신호를 이용한 유도전동기의 지능적 결함 진단 (Intelligent Fault Diagnosis of Induction Motors Using Vibration Signals)

  • 한천;양보석;김재식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.822-827
    • /
    • 2004
  • In this paper, an intelligent fault diagnosis system is proposed for induction motors through the combination of feature extraction, genetic algorithm (GA) and neural network (ANN) techniques. Features are extracted from motor vibration signals, while reducing data transfers and making on-line application available. GA is used to select most significant features from whole feature database and optimize the ANN structure parameter. Optimized ANN diagnoses the condition of induction motors online after trained by the selected features. The combination of advanced techniques reduces the learning time and increases the diagnosis accuracy. The efficiency of the proposed system is demonstrated through motor faults of electrical and mechanical origin on the induction motors. The results of the test indicate that the proposed system is promising for real time application.

  • PDF

교육용 가상실험 라인 트레이서 모델링 (Line Tracer Modeling for Educational Virtual Experiment)

  • 기장근;권기영
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제17권2호
    • /
    • pp.109-116
    • /
    • 2021
  • 전통적으로 공학분야는 실험 실습 위주의 대면 교육이 주를 이루어 왔으나, IT 기술 및 인터넷 통신망의 급속한 발전과 최근 COVID-19 등의 사회적 환경 변화로 인해 온라인 학습에 대한 수요가 급증하고 있다. 다른 분야에 비해 실험 실습의 비중이 상대적으로 높은 공학 분야에서 효율적인 온라인 교육이 이루어지려면 실제 실험 실습을 대체할 수 있는 가상 실험실습 콘텐츠가 매우 필요하다. 본 연구에서는 전기전자 분야 뿐만 아니라 IT 융합이 이루어지고 있는 전반적인 공학 분야에서 필수적으로 사용되고 있는 마이크로프로세서의 효율적인 온라인 응용 학습을 위해 라인 트레이서 모델을 개발하고 이를 시뮬레이션 할 수 있는 가상실험 소프트웨어를 개발하였다. 개발된 라인 트레이서 모델에서 사용자는 원하는 형태로 하드웨어 파라미터 값들을 다양하게 설정하고, 이에 따른 소프트웨어를 어셈블리 언어나 C 언어 등으로 작성하여 컴퓨터 상에서 동작을 시험해 볼 수 있도록 구성되었다. 개발된 라인 트레이서 가상 실험 소프트웨어는 실제 수업에 활용하여 동작을 검증하였으며, 앞으로 온라인 상에서 이루어지는 비대면 수업에서 효율적인 가상 실험 실습 도구가 될 것으로 기대된다.

학습자 동기 유형에 따른 비대면 온라인 교육의 효과 연구 (A study on the effect of non-face-to-face online education according to the type of learner motivation)

  • 진홍근;김민정
    • 한국융합학회논문지
    • /
    • 제12권7호
    • /
    • pp.133-142
    • /
    • 2021
  • 본 연구는 온라인 교육의 효과를 학습자들이 수업 관련 특정 이슈들에 대한 적극적 탐색과 공유의 측면으로 확대하여 살펴보고자 선행연구를 바탕으로, 이슈를 탐색하도록 유도하는 동기의 두 유형(개인적, 사회적)과 인게이지먼트, 이슈콘텐츠에 대한 태도, SNS구전의도 모형을 검증하였다. 연구결과, 학습자들의 두 동기는 인게이지먼트에 정(+)의 영향력을 미치고 있었으며, 인게이지먼트가 증가할수록 이슈콘텐츠 태도와 SNS 구전의도는 긍정적으로 나타났다. 본 연구에서는 스스로 학습을 진행하도록 유도하는 인게이지먼트의 역할을 확인할 수 있으며, 인게이지먼트의 증가를 위해 수업내용뿐만 아니라 사회적, 개인적 동기를 활용해야할 필요성을 제안한다.

비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로 (Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront)

  • 김승수;김종우
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.221-241
    • /
    • 2018
  • 최근 딥러닝 기술이 주목을 받고 있다. 대중들의 관심을 받았던 국제 이미지 인식 기술 대회(ILSVR)와 알파고(AlphaGo)에서 사용된 딥러닝 기술이 바로 합성곱 신경망(CNN; Convolution Neural Network)이다. 합성곱 신경망은 입력 이미지를 작은 구역으로 나누어 부분적인 특징을 인식하고 이것을 결합하여 전체를 인식하는 특징을 가진다. 이러한 딥러닝 기술이 우리의 생활에 있어 많은 변화를 야기할 것이라는 기대를 주고 있지만 현재까지는 이미지 인식과 자연어 처리 등에 그 성과가 국한되어 있다. 비즈니스 문제에 대한 딥러닝 활용은 아직까지 초기 연구 단계로 향후 마케팅 응답 예측이나 허위 거래 식별, 부도 예측과 같은 전통적 비즈니스 문제들에 대해 보다 깊게 활용되고 그 성능이 입증된다면 딥러닝 기술의 활용 가치가 보다 더 주목받게 될 것으로 기대된다. 이러한 때 비교적 고객 식별이 용이하고 활용 가치가 높은 빅데이터를 보유하고 있는 전자상거래 기업의 사례를 바탕으로 하여 딥러닝 기술의 비즈니스 문제 해결 가능성을 진단해보는 것은 학술적으로 매우 의미 있는 시도라 할 수 있겠다. 이에 본 연구에서는 전자상거래 기업의 고객 행태 예측력을 높이기 위한 방안으로 합성곱 신경망을 활용한 '이종 정보 결합(Heterogeneous Information Integration)의 CNN 모델'을 제시한다. 이는 정형과 비정형 정보를 결합하여 다층 퍼셉트론 구조의 합성곱 신경망에서 학습시키는 모델로서 최적의 성능을 발휘하도록 '이종 정보 결합'과 '비정형 정보의 벡터 전환', 그리고 '다층 퍼셉트론 설계'로 하는 3개의 내부 아키텍처를 정의하고 각 아키텍처 단위로 구성되는 방식에 따른 성능을 평가하여 그 결과를 바탕으로 제안 모델을 확정하고 그 성능을 평가해보고자 한다. 고객 행태 예측을 위한 목표 변수는 전자상거래 기업에서 중요하게 관리하고 있는 재구매 고객, 이탈 고객, 고빈도 구매 고객, 고빈도 반품 고객, 고단가 구매 고객, 고할인 구매 고객 등 모두 6개의 이진 분류 문제로 정의한다. 제안한 모델의 유용성을 검증하기 위해서 국내 특정 전자상거래 기업의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 정형과 비정형 정보를 결합하여 CNN을 활용한 제안 모델이 NBC(Naïve Bayes classification)과 SVM(Support vector machine), 그리고 ANN(Artificial neural network)에 비해서 예측 정확도와 F1 Measure가 높게 평가되었다. 또 NBC, SVM, ANN에서 정형 정보만을 사용할 때 보다 정형과 비정형 정보를 결합하여 입력 변수로 함께 활용한 경우에 예측 정확도가 향상되는 것으로 나타났다. 따라서 실험 결과로부터 비정형 정보의 활용이 고객 행태 예측의 정확도 향상에 기여한다는 점과 CNN 기법의 특징 추출 알고리즘이 VOC에 사용된 단어들의 분포와 위치 정보를 해석하여 문장의 의미를 파악하는데 효과적이라는 점을 실증적으로 확인하였다는데 그 의미가 있다고 할 수 있겠다. 이를 통해서 CNN 기법이 지금까지 소개된 이미지 인식이나 자연어 처리 분야 외에 비즈니스 문제 해결에도 활용 가치가 높다는 점을 확인하였다는데 이 연구의 의의가 있다 하겠다.

Robust Adaptive Wavelet-Neural-Network Sliding-Mode Speed Control for a DSP-Based PMSM Drive System

  • El-Sousy, Fayez F.M.
    • Journal of Power Electronics
    • /
    • 제10권5호
    • /
    • pp.505-517
    • /
    • 2010
  • In this paper, an intelligent sliding-mode speed controller for achieving favorable decoupling control and high precision speed tracking performance of permanent-magnet synchronous motor (PMSM) drives is proposed. The intelligent controller consists of a sliding-mode controller (SMC) in the speed feed-back loop in addition to an on-line trained wavelet-neural-network controller (WNNC) connected in parallel with the SMC to construct a robust wavelet-neural-network controller (RWNNC). The RWNNC combines the merits of a SMC with the robust characteristics and a WNNC, which combines artificial neural networks for their online learning ability and wavelet decomposition for its identification ability. Theoretical analyses of both SMC and WNNC speed controllers are developed. The WNN is utilized to predict the uncertain system dynamics to relax the requirement of uncertainty bound in the design of a SMC. A computer simulation is developed to demonstrate the effectiveness of the proposed intelligent sliding mode speed controller. An experimental system is established to verify the effectiveness of the proposed control system. All of the control algorithms are implemented on a TMS320C31 DSP-based control computer. The simulated and experimental results confirm that the proposed RWNNC grants robust performance and precise response regardless of load disturbances and PMSM parameter uncertainties.

신경회로망을 이용한 절연 열화진단에 관한 연구 (A Study on Insulation Degradation Diagnosis Using a Neural Network)

  • 박재준
    • 정보학연구
    • /
    • 제2권2호
    • /
    • pp.13-22
    • /
    • 1999
  • 본 논문에서, 부분방전 메카니즘을 진단하고 그리고 신경망을 도입하여 수명을 예측하기 위한 기초연구로서, 온라인상에서 자동진단을 제안했다. 제안한 방법에서 우리는 음향방출 감지시스템과 그리고 펄스 수와 펄스진폭에 의해서 정량적인 통계파라메타를 사용하였다. 통계적인 파라메타인 가령, 무게중심(G)와 방전분포 경도(C)를 이용하였고 그리고 초기단계와 중기단계에 대해서 분석하였다. 정량적인 통계파라메타들은 신경망에 의해서 학습되어졌다. 초기단계에 의해서 수명예측과 절연열화의 진단이 이루어졌다. 열화가 진행하는 동안 신경망 학습을 통한 휼륭한 진단능력이 있음이 근본적으로 드러났고, 신경망이 부분방전에 있어서 절연진단 및 수명예측을 위해서 적절하다는 것이 증명되었다.

  • PDF

An Extended Work Architecture for Online Threat Prediction in Tweeter Dataset

  • Sheoran, Savita Kumari;Yadav, Partibha
    • International Journal of Computer Science & Network Security
    • /
    • 제21권1호
    • /
    • pp.97-106
    • /
    • 2021
  • Social networking platforms have become a smart way for people to interact and meet on internet. It provides a way to keep in touch with friends, families, colleagues, business partners, and many more. Among the various social networking sites, Twitter is one of the fastest-growing sites where users can read the news, share ideas, discuss issues etc. Due to its vast popularity, the accounts of legitimate users are vulnerable to the large number of threats. Spam and Malware are some of the most affecting threats found on Twitter. Therefore, in order to enjoy seamless services it is required to secure Twitter against malicious users by fixing them in advance. Various researches have used many Machine Learning (ML) based approaches to detect spammers on Twitter. This research aims to devise a secure system based on Hybrid Similarity Cosine and Soft Cosine measured in combination with Genetic Algorithm (GA) and Artificial Neural Network (ANN) to secure Twitter network against spammers. The similarity among tweets is determined using Cosine with Soft Cosine which has been applied on the Twitter dataset. GA has been utilized to enhance training with minimum training error by selecting the best suitable features according to the designed fitness function. The tweets have been classified as spammer and non-spammer based on ANN structure along with the voting rule. The True Positive Rate (TPR), False Positive Rate (FPR) and Classification Accuracy are considered as the evaluation parameter to evaluate the performance of system designed in this research. The simulation results reveals that our proposed model outperform the existing state-of-arts.