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Abstract 

In this paper, an intelligent fault diagnosis system is proposed for induction motors through the 
combination of feature extraction, genetic algorithm (GA) and neural network (ANN) techniques. Features are 
extracted from motor vibration signals, while reducing data transfers and making on-line application available. 
GA is used to select most significant features from whole feature database and optimize the ANN structure 
parameter. Optimized ANN diagnoses the condition of induction motors online after trained by the selected 
features. The combination of advanced techniques reduces the learning time and increases the diagnosis 
accuracy. The efficiency of the proposed system is demonstrated through motor faults of electrical and 
mechanical origin on the induction motors. The results of the test indicate that the proposed system is 
promising for real time application. 

1. Introduction 

As the majority of the industry prime movers, 
induction motors play an important role in 
manufacture, transportation, etc., due to their 
reliability and simplicity of construction. Although 
induction motors are reliable, the possible of faults 
is unavoidable. These failures may be inherent to 
the machine itself or caused by operating conditions 
[1]. Early fault diagnosis and condition monitoring 
can increase machinery availability and 
performance, reduce consequential damage, 
prolong machine life, and reduce spare parts 
inventories and breakdown maintenance. Therefore, 
fault diagnosis of induction motors has received 
considerable attention in recent years.  

 

The statistical studies of EPRI and IEEE for 
motor faults are cited [2]. Under EPRI sponsorship 
on industry assessments, a study was conducted by 
General Electric Co. to evaluate the reliability of 
powerhouse motors and identify the operation 
characteristics. Part of this study is to specify the 
reason behind the motor failures. The study of 
IEEE-IGA was carried out on the basis of opinion 
as reported by the motor manufacture. The 
percentages of main motor faults are shown in 
Table 1. Through these two studies, we notice that 
bearings are weakest component in induction motor, 
then stator, rotor and others. 

 
Table 1 Fault occurrence possibility on induction motor 

 Bearing 
faults 

Stator 
faults 

Rotor 
faults Others 

IEEE  42 % 28 % 8 % 22 % 
EPRI 40 % 38 % 10 % 12 % 

 
Corresponding to the above-mentioned faults, 

many techniques have been proposed for motor 
faults detection and diagnosis. These techniques 
include vibration monitoring, motor current 
signature analysis (MCSA) [3], electromagnetic 
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field monitoring [4], chemical analysis, temperature 
measurability [5], infrared measurement, acoustic 
noise analysis [6] and partial discharge 
measurement [7]. Among these methods, vibration 
analysis and current analysis are the most popular 
ones due to their easy measurability, high accuracy 
and reliability. In this study, the vibration signals 
are considered. The reliability of vibration signals 
are demonstrated through comparing with stator 
current signals. 

Recently, artificial intelligence (AI) techniques, 
such as expert systems, artificial neural networks 
(ANNs), fuzzy logic systems, and genetic algorithm 
(GA), have been employed to assist the diagnosis 
and condition monitoring task to correctly interpret 
the fault data [8]. ANN has gained popularity over 
other techniques, as it is efficient in discovering 
similarities among large bodies of data. ANN is the 
functional imitation of a human brain, which 
simulates the human decision-making and draws 
conclusions even when presented with complex, 
noisy, irrelevant information. ANNs can represent 
any non-linear model without knowledge of its 
actual structure and can give result in a short time 
during the recall phase. Research of ANN has been 
carried out successfully for fault diagnosis, and the 
results are promising [9]. 

 However, the main problems facing the use of 
ANN are the selection of the best inputs and how to 
choose the ANN parameters making the structure 
compact, and creating highly accurate networks. 
For the proposed system, the feature selection is 
also an important process since there are many 
features after feature extraction. Many input 
features require a significant computational effort to 
calculate, and maybe result in low successful rate. 
To make operation faster and also to increase the 
accuracy of the classification, a feature selection 
process using GA is used to isolate those features 
providing the most significant features for the 
neural network, whilst cutting down the number of 
features required for the network. During selection 
process, the network structure parameter is 
optimized. 

In this work, the fault diagnosis system of induction 
motors is proposed by combining advanced techniques: 
feature extraction, GA and ART-KNN, using motor 
vibration signals. All the experiments were implemented 
on the self-designed test rig. The result shows that the 
proposed system is efficient and promising for real time 
applications. 

2. Proposed fault diagnosis system 

The proposed system and the overall description 
of the theoretical background are described. The 
architecture of the system is shown in Fig. 1. 

 

 
Fig. 1. Architecture of the diagnosis system. 

 
The original vibration signals are acquired by 

accelerometers from test induction motors. The 
features of the transformed data are extracted from 
the database using statistical parameters, such as 
RMS, histogram, etc. Then GA is used as feature 
selector and network optimizer. The optimized 
neural network is able to on-line carry out without 
losing previous knowledge, which is suitable for 
and on-line condition monitoring and fault 
diagnosis in the real time application.  

 
2.1.  Feature extraction 

Recently, on-line diagnosis systems are popular 
because they can detect the faults at the first time. 
However, the direct measured signals are not 
suitable for on-line use since short sampling 
number is deficient for diagnosis, and enough 
sampling number is a burden for transferring and 
calculation. So feature extraction of the signal is a 
critical initial step in any monitoring and fault 
diagnosis system. Its accuracy directly affects the 
final monitoring results. Thus, the feature extraction 
should preserve the critical information for 
decision-making. In this paper, the features of the 
signals are extracted from the time domain and 
frequency domain [10].  

 
2.2. Feature selection using genetic algorithm 

In practical application, the feature selection 
problem has become a quite hot topic in many 
fields, such as classification, data mining, image 
processing, and conceptual learning etc. In this 
study, GA is used to pick up these features, which 
can provide the most important information for the 
neural network. 

There is some justification for using GA based 
feature selection over some other methods available, 
such as principal component analysis (PCA), which 
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can be much less computationally intensive than a 
GA based approach. The downside to PCA is that 
all the available features are required for the 
transformation matrix to create the rotated feature 
space. However, it must be remembered that the 
drive behind the feature selection process is create a 
small system that requires as little processing as 
possible, whilst maintaining a high level of 
accuracy. Using PCA will still require the 
calculation of all the available features before the 
transformation matrix can be applied, and hence it 
requires a larger computing power on-board the 
hypothetical smart sensor than would be needed by 
using a GA that selects only the best features. The 
computational cost of the GA will be much higher 
than using a system like PCA during training and 
feature selection; however, this will be offset by the 
lower computation power required on a sensor, and 
hence the lower cost in manufacture. Another 
alternative for feature selection would be to use 
forward selection. One problem of forward 
selection is in the case where two features acting 
individually are relatively poor, but when used 
together give a much better result than two best 
features achieved through forward selection. The 
use of a GA has no such problem, as the features 
are selected as a unit, and the interaction between 
the different features as a group is tested, rather 
than as individual features. According to above 
statement, the GA is allowed to select subsets of 
various sizes to determine the optimum 
combination and number of inputs to the network. 

While any successful application of GAs to a 
problem is greatly dependent on finding a suitable 
method for encoding, the creation of a fitness 
function to rank the performance of a particular 
genome is important for the success of the training 
process. The GA will rate its own performance 
around that of the fitness function. Consequently, if 
the fitness function does not adequately take 
account of the desired performance features, the GA 
will be unable to meet the requirements of the user. 

A simple GA, which is proposed by Goldberg , is 
used as feature selector in this paper. A simple 
binary-based genome string is implemented. The 
genome is composed of two parts: one part 
determines which features are selected as an input 
subset from the whole database (“0” represents 
feature absence, “1” means feature presence), 
another part is used to choice the network structure 
parameter.  

2.2.1. GA operators 
There are three fundamental operators of GA: 

selection, crossover and mutation. The aim of the 

selection procedure is to reproduce more copies of 
individuals whose fitness values are higher than 
others. This procedure has a significant influence on 
driving the search towards a promising area and 
finding food solutions in a short time. The roulette 
wheel selection is used for individual selection. The 
selection probability Ps(si) of the ith individual is 
expressed as following equation: 

 

1

( )( ) , ( 1 ~ )
( )
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s i N

j
j
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=

= =

∑
        (2)  

 
where s is a individual, f(si) is the fitness value of 
the ith individual and N is the number of individual. 
According to the values of Ps(s), each individual is 
defined for the widths of slots on the wheel.  

The crossover operator is used to create two new 
individuals (children or offspring) from two 
existing individuals (parents) picked from the 
current population by the selection operation. There 
are also several ways of doing this. One point 
simple crossover is used for this process. After that, 
all individuals in the population are checked bit by 
bit and the bit values are randomly reversed 
according to a specified rate.  

The mutation operator helps the GA avoid 
premature convergence and find the global optimal 
solution. In the binary coding, this simply means 
changing 1 to 0 and vice versa. In the standard GA, 
the probability of mutation is set equal to a constant. 
However, it is clear in examining the convergence 
characteristics of GAs that what is actually desired 
is a probability of mutation which varies during 
generational processing. In early generations, the 
population is diverse and mutation may actually 
destroy some of the benefits gained by crossover. 
Thus, in early generations it would be desired to 
have a low probability of mutation. In later 
generations, the population is losing diversity as all 
members move ‘close’ to the optimal solution, and 
thus a higher probability of mutation is needed to 
maintain the search over the entire design space. 
Thus, the selection of the probability of mutation 
must carefully balance these two conflicting 
requirements. The mutation probability Pm(si) is 
then tied to the diversity measure through an 
exponential function: 

 
Pm(si) = 1 − 0.99 exp (−4 × Ni / Nt)       (3) 
                                     

where Ni and Nt are the number of current 
generation and total generation, respectively. 
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2.2.2. Formulation of optimization 
Since GA is used for feature selection and neural 

network optimization according to selected features, 
the objective function should relate with features 
and network structure parameter. In the real 
application, the number of features and neurons and 
the value of network parameter are the smaller the 
better. The reason is the small features and neurons 
can reduce the calculation time and make network 
structure compact. Thus the objective function is as 
following: 

 

max

( ) = n n

T

F Nf s
F N

ρ× ×                  (4) 

                                                            
where selected features Fn and network similarity ρ 
are variable, their ranges are 0-63 and 0-1 
respectively. The number of neurons Nn is 
determined by Fn and ρ. The minimum function 
value f(s) is searched by GA under 100% 
classification. 
 

2.3. ART-Kohonen neural network (ART-KNN) 
The architecture of ART-KNN is shown in Fig. 2. 

It is similar to ART1’s, excluding the adaptive filter. 
ART-KNN is also formed by two major subsystems: 
the attentional subsystem and the orienting 
subsystem. Two interconnected layers, discernment 
layer and comparison layer, which are fully 
connected both bottom-up and top-down, comprise 
the attentional subsystem. The application of a 
single input vector leads to patterns of neural 
activity in both layers. The activity in discernment 
nodes reinforces the activity in comparison nodes 
due to top-down connections. The interchange of 
bottom-up and top-down information leads to a 
resonance in neural activity. As a result, critical 
features in comparison are reinforced, and have the 
greatest activity. The orienting subsystem is 
responsible for generating a reset signal to 
discernment when the bottom-up input pattern and 
top-down template pattern mismatch at comparison, 
according to a similarity. In others words, once it 
has detected that the input pattern is novel, the 
orienting subsystem mush prevent the previously 
organized category neurons in discernment from 
learning this pattern (visa a reset signal). Otherwise, 
the category will become increasingly non-specific. 
When a mismatch is detected, the network adapts 
its structure by immediately storing the novelty in 
additional weights. The similarity criterion is set by 
the value of the similarity parameter. A high value 
of the similarity parameter means than only a slight 

mismatch will be tolerated before a reset signal is 
emitted. On the other hand, a small value means 
that large mismatches will be tolerated. After the 
resonance check, if a pattern match is detected 
according to the similarity parameter, the network 
changes the weights of the winning node.  
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Fig. 3. Architecture of the ART-KNN network. 
 

The learning strategy is introduced by the 
Kohonen neural network. The Euclidean distances 
of all weights between input vector X and each 
neuron of the discernment layer are evaluated as the 
similarity given by Eq. (15), the smallest one 
becomes the winning neuron.  

 
||BJ – X|| < ||Bj – X|| ,  j, J = 1, 2, …, n; j≠J   (5)  
 

where Bj is the weight of jth neuron in the 
discernment layer, BJ is the weight of the winning 
neuron. After producing the winning neuron, input 
vector X returns to the comparison layer. The 
absolute similarity S is calculated by 
 

|| || || ||
|| ||

J J

J

B B XS
B

− −
=    (6) 

 
If BJ and X in Eq. (6) are same, || BJ - X || is equal 

to 0, and S is 1. The larger the Euclidean distance 
between BJ and X is, the smaller S is. A parameter ρ 
is introduced as the evaluation criterion of similarity. 
If S > ρ, it indicates that the Jth cluster is 
sufficiently similar to X. So X belongs to the Jth 
cluster. In order to make the weight more accurate 
to represent the corresponding cluster, the weight of 
Jth cluster is improved by the following equation: 

 
 BJ = (n BJ 0 + X)/(n + 1)          (7) 
 
where BJ is the enhanced weight, BJ 0 is the 

origin weight, and n is changed time. 
On the contrary, as S < ρ, it means that X is much 

 825

대한기계학회 2004년도 춘계학술대회 논문집



 
 

different with the Jth cluster. Thus there is no 
cluster that matches X in the original network. The 
network needs one more neuron to remember this 
new case by resetting in the discernment layer. The 
weight of new neuron is given by 

 
Bn+1 = X      (8) 

 
3. Experiment process and results 

The experiment was carried out under the self-
designed test rig, which is mainly composed of 
motor, pulleys, belt, shaft and fan with changeable 
pitch blades, shown in the Fig. 3. 

 

 
Fig. 3. Experiment apparatus. 

 
Six 0.5kW, 60Hz, 4-pole induction motors are 

used to make the data needed under full-load 
conditions. One of the motors is normal (healthy), 
which is considered as benchmark for comparing 
with faulty ones. Others are faulty: broken rotor bar, 
bowed rotor, bearing outer race fault, rotor 
unbalance and adjustable eccentricity motor 
(misalignment), shown in Fig. 4. The conditions of 
faulty induction motors are described in Table 2. 
The load of the motors is simulated with an eight-
blade fan, which can be changed by adjusting the 
blade angle or the number of the blades.  

 

 
Fig. 4. Faults on the induction motors. 

 

Fault condition Fault description Others 

Broken rotor bar Number of broken 
bar: 12 

Total number of 
34 bars 

Bowed rotor Shaft deflection: 
0.075 mm Air-gap: 0.25 mm

Faulty bearing A spalling on outer 
race damage #6203 

Rotor unbalance Unbalance mass on 
the rotor: 8.4g  

Eccentricity Parallel and angular 
misalignments 

Adjusting the 
bearing pedestal

 
Table 2 The description of faulty induction motors 

 
The vibration signals obtained from three 

directions are calculated by the 21 statistical 
parameters to extract the features, such as mean, 
RMS, skewness, kurtosis, shape factor, crest factor, 
frequency center, entropy estimation and histogram, 
etc.  

One problem appears after the feature extraction. 
There are too many input features (3×21 = 63) that 
would require a significant computational effort to 
calculate, and maybe result in low the accuracy of 
the monitoring and fault diagnosis. Thus GA for 
feature selection is used in this paper to isolate 
those features providing the most significant 
information for the neural network, whilst cutting 
down the number of inputs required for the network. 
The parameters of GA settings are listed in Table 3. 

 
Parameter Setting 

Population No. 200 

Genome No. 63 

Selection type Roulette wheel 

Crossover Simple one point crossover 

Mutation Pm(si) = 1 − 0.99 exp (−4 × Ni / Nt) 

Maximum generation 20 
 
Table 3 Binary genetic algorithm parameters setting 

for feature selection 
 

The final selection results by GA are shown in 
Table. 4 and Fig. 5. The input features are selected, 
and the network parameter is optimized 
corresponding to the selected features.  

 

 Table 4 Feature selection based on GA  
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Fig. 5. Convergence curves of GA under full-load 

conditions 
In Table 4, row represents accelerometer signal, 

column is feature, and darkness block means 
selected features. Total 32 features are selected 
from original feature data based (63 features), 
which reduces the calculation time and increases 
the diagnosis accuracy. Based on the structure 
optimized by GA, the classification ration can reach 
100%, and just seven neurons are used. Simpler 
network structure and fewer features make the 
proposed system more reliability, and suitable for 
real-world on-line condition monitoring and fault 
diagnosis.  

 
4. Summary and conclusions 

In this paper, a fault diagnosis system for 
induction motors was proposed. The proposed 
system uses feature extraction techniques to extract 
the features from motor vibration signals. Then the 
input features selected by the genetic algorithm 
enter the input vectors of the ART-KNN. Since the 
network can be carried out on-line, the system can 
learn and classify at the same time. The proposed 
system was tested by signal obtained from six 
induction motors under full-load conditions. One is 
normal motor, others are subject to the faults: 
broken rotor bar, fault bearing (outer race), 
unbalance rotor, bowed rotor, misalignment. The 
test results are very satisfied. It is promising for the 
real time application. The results of this study allow 
us to offer the following conclusions: 

• Vibration signals can carry out condition 
monitoring and fault diagnosis for induction 
motor. 

• Genetic algorithm is suitable for feature 
selection and can optimize the network 
simultaneously. 
• The proposed system has high effectiveness, 

and the success rate can reach above 100% 

for the tested faults. 
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